933 resultados para heat diffusion in semiconductors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion terms in the mean velocity and temperature equations of turbulent flow are analysed to decide when variations of fluid properties can produce appreciable errors. # A theoretical demonstration is given that in the mean-flow continuity equation for a gas the error in assuming constant density is small if the flow is turbulent, even when the temperature variations are large. # Separate discussion is given of the case of local heat sources in turbulence, as large errors can occur there.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this thesis is an attempt to enhance heat transfer in electronic devices with the use of impinging air jets on pin-finned heat sinks. The cooling per-formance of electronic devices has attracted increased attention owing to the demand of compact size, higher power densities and demands on system performance and re-liability. Although the technology of cooling has greatly advanced, the main cause of malfunction of the electronic devices remains overheating. The problem arises due to restriction of space and also due to high heat dissipation rates, which have increased from a fraction of a W/cm2to 100s of W /cm2. Although several researchers have at-tempted to address this at the design stage, unfortunately the speed of invention of cooling mechanism has not kept pace with the ever-increasing requirement of heat re- moval from electronic chips. As a result, efficient cooling of electronic chip remains a challenge in thermal engineering. Heat transfer can be enhanced by several ways like air cooling, liquid cooling, phase change cooling etc. However, in certain applications due to limitations on cost and weight, eg. air borne application, air cooling is imperative. The heat transfer can be increased by two ways. First, increasing the heat transfer coefficient (forced convec- tion), and second, increasing the surface area of heat transfer (finned heat sinks). From previous literature it was established that for a given volumetric air flow rate, jet im-pingement is the best option for enhancing heat transfer coefficient and for a given volume of heat sink material pin-finned heat sinks are the best option because of their high surface area to volume ratio. There are certain applications where very high jet velocities cannot be used because of limitations of noise and presence of delicate components. This process can further be improved by pulsating the jet. A steady jet often stabilizes the boundary layer on the surface to be cooled. Enhancement in the convective heat transfer can be achieved if the boundary layer is broken. Disruptions in the boundary layer can be caused by pulsating the impinging jet, i.e., making the jet unsteady. Besides, the pulsations lead to chaotic mixing, i.e., the fluid particles no more follow well defined streamlines but move unpredictably through the stagnation region. Thus the flow mimics turbulence at low Reynolds number. The pulsation should be done in such a way that the boundary layer can be disturbed periodically and yet adequate coolant is made available. So, that there is not much variation in temperature during one pulse cycle. From previous literature it was found that square waveform is most effective in enhancing heat transfer. In the present study the combined effect of pin-finned heat sink and impinging slot jet, both steady and unsteady, has been investigated for both laminar and turbulent flows. The effect of fin height and height of impingement has been studied. The jets have been pulsated in square waveform to study the effect of frequency and duty cycle. This thesis attempts to increase our understanding of the slot jet impingement on pin-finned heat sinks through numerical investigations. A systematic study is carried out using the finite-volume code FLUENT (Version 6.2) to solve the thermal and flow fields. The standard k-ε model for turbulence equations and two layer zonal model in wall function are used in the problem Pressure-velocity coupling is handled using the SIMPLE algorithm with a staggered grid. The parameters that affect the heat transfer coefficient are: height of the fins, total height of impingement, jet exit Reynolds number, frequency of the jet and duty cycle (percentage time the jet is flowing during one complete cycle of the pulse). From the studies carried out it was found that: a) beyond a certain height of the fin the rate of enhancement of heat transfer becomes very low with further increase in height, b) the heat transfer enhancement is much more sensitive to any changes at low Reynolds number than compared to high Reynolds number, c) for a given total height of impingement the use of fins and pulsated jet, increases the effective heat transfer coefficient by almost 200% for the same average Reynolds number, d) for all the cases it was observed that the optimum frequency of impingement is around 50 − 100 Hz and optimum duty cycle around 25-33.33%, e) in the case of turbulent jets the enhancement in heat transfer due to pulsations is very less compared to the enhancement in case of laminar jets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, bulk and multifoil diffusion couple experiments were conducted to examine the interdiffusion process in Ni-Pt and Co-Pt binary alloy systems. Inter-, intrinsic-, and tracer-diffusion coefficients at different temperatures, and as a function of the composition, were estimated by using the experimental data. Results show that in both the alloy systems, Pt is the slower diffusing species, and hence the interdiffusion process is controlled by either Ni or Co. The thermodynamic driving force makes the intrinsic diffusion coefficients of Co and Ni higher in the range of 30-70 at.%. The low activation energy for Co and Ni impurity diffusion in Pt compared with Pt in Ni and Co indicates that the size of the atoms plays an important role. The vacancy wind effects on the diffusion process are examined in detail, and it was demonstrated that its contribution falls within the experimental scatter and hence can be neglected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5-15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature. Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the free convection and plumes dynamics over horizontal surfaces with parallel V-grooves. The convection is studied in a tank of water with the bottom surface being a smooth or grooved surface and the top of the water surface exposed to ambient. Two groove heights were used-10 mm and 3 mm-and the experiment was done with two values of aspect ratio-2.9 and 1.8 (aspect ratio is the width of the fluid layer/height of fluid layer). Heat flux at the bottom surface was from electrical heating. Beyond a certain critical temperature difference, enhanced heat transfer is obtained on the grooved surface compared to a smooth surface. Nusselt numbers are evaluated for both smooth and grooved surfaces and correlated using modified Rayleigh numbers. Visualization shows that the enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area; rather, it must be the local dynamics of the thermal boundary layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deleterious topological-closed-packed (tcp) phases grow in the interdiffusion zone in turbine blades mainly because of the addition of refractory elements such as Mo and W in the Ni- and Co-based superalloys. CoNi/Mo and CoNi/W diffusion couples are prepared to understand the growth mechanism of the phases in the interdiffusion zone. Instead of determining the main and cross-interdiffusion coefficients following the conventional method, we preferred to determine the average effective interdiffusion coefficients of two elements after fixing the composition of one element more or less the same in the interdiffusion zone. These parameters can be directly related to the growth kinetics of the phases and shed light on the atomic mechanism of diffusion. In both systems, the diffusion rate of elements and the phase layer thickness increased because of the addition of Ni in the solid solution phase, probably because of an increase in driving force. On the other hand, the growth rate of the mu phase and the diffusion coefficient of the species decreased because of the addition of Ni. This indicates the change in defect concentration, which assists diffusion. Further, we revisited the previously published Co-Ni-Mo and Co-Ni-W ternary phase diagrams and compared them with the composition range of the phases developed in the interdiffusion zone. Different composition ranges of the tcp phases are found, and corrected phase diagrams are shown. The outcome of this study will help to optimize the concentration of elements in superalloys to control the growth of the tcp phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous beta-MnO2 has been prepared, characterized and demonstrated to possess excellent catalytic activity in the thermal decomposition of ammonium perchlorate. The observed unprecedentedly low decomposition temperatures, fast reaction rates and enhanced heat releases in the catalysed formulations make mesoporous beta-MnO2 promising as a high-performing ballistic modifier in AP-based composite solid rocket propellants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion couple technique is used to study interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr systems. Interdiffusion coefficients at different temperatures and compositions are determined using the relation developed by Wagner. The change in activation energy for interdiffusion with composition is determined. Further, impurity diffusion coefficient of the species are determined and compared with the available data in literature.