890 resultados para guided-wave optics
Resumo:
Although the potential importance of scattering of long-wave radiation by clouds has been recognised, most studies have concentrated on the impact of high clouds and few estimates of the global impact of scattering have been presented. This study shows that scattering in low clouds has a significant impact on outgoing long-wave radiation (OLR) in regions of marine stratocumulus (-3.5 W m(-2) for overcast conditions) where the column water vapour is relatively low. This corresponds to an enhancement of the greenhouse effect of such clouds by 10%. The near-global impact of scattering on OLR is estimated to be -3.0 W m(-2), with low clouds contributing -0.9 W m(-2), mid-level cloud -0.7 W m(-2) and high clouds -1.4 W m(-2). Although this effect appears small compared to the global mean OLR of 240 W m(-2), it indicates that neglect of scattering will lead to an error in cloud long-wave forcing of about 10% and an error in net cloud forcing of about 20%.
Resumo:
A set of filters based on the sequence of semiconductor edges is described which offers continuity of short-wave infrared blocking. The rejection throughout the stop region is greater than 103 for each filter and the transmission better than 70% through one octave with a square cutoff. The cutoff points are located at intervals of about two-thirds of an octave. Filters at 2.6 ,µm, 5.5 µm, and 12 µm which use a low-passing multilayer in combination with a semiconductor absorption edge are described in detail. The design of multilayers for optimum performance is discussed by analogy with the synthesis of electric circuit filters.
Resumo:
We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.
Resumo:
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x [greater-or-equal, slanted] 0 and x,y [greater-or-equal, slanted] 0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann–Hilbert problem in the one-dimensional case, and a nonlocal Riemann–Hilbert problem in the two-dimensional case.
Resumo:
If the potential field due to the nuclei in the methane molecule is expanded in terms of a set of spherical harmonics about the carbon nucleus, only the terms involving s, f, and higher harmonic functions differ from zero in the equilibrium configuration. Wave functions have been calculated for the equilibrium configuration, first including only the spherically symmetric s term in the potential, and secondly including both the s and the f terms. In the first calculation the complete Hartree-Fock S.C.F. wave functions were determined; in the second calculation a variation method was used to determine the best form of the wave function involving f harmonics. The resulting wave functions and electron density functions are presented and discussed
Resumo:
The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum across the air–sea interface. Atmospheric and oceanic models typically allow for momentum transfer to be directed only downward, from the atmosphere to the ocean. Recent observations have suggested that momentum can also be transferred upward when long wavelength waves, characteristic of remotely generated swell, propagate faster than the wind speed. The effect of upward momentum transfer on the marine atmospheric boundary layer is investigated here using idealized models that solve the momentum budget above the ocean surface. A variant of the classical Ekman model that accounts for the wave-induced stress demonstrates that, although the momentum flux due to the waves penetrates only a small fraction of the depth of the boundary layer, the wind profile is profoundly changed through its whole depth. When the upward momentum transfer from surface waves sufficiently exceeds the downward turbulent momentum flux, then the near-surface wind accelerates, resulting in a low-level wave-driven wind jet. This increases the Coriolis force in the boundary layer, and so the wind turns in the opposite direction to the classical Ekman layer. Calculations of the wave-induced stress due to a wave spectrum representative of fast-moving swell demonstrate upward momentum transfer that is dominated by contributions from waves in the vicinity of the peak in the swell spectrum. This is in contrast to wind-driven waves whose wave-induced stress is dominated by very short wavelength waves. Hence the role of swell can be characterized by the inverse wave age based on the wave phase speed corresponding to the peak in the spectrum. For a spectrum of waves, the total momentum flux is found to reverse sign and become upward, from waves to wind, when the inverse wave age drops below the range 0.15–0.2, which agrees reasonably well with previously published oceanic observations.
Resumo:
This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady water wave problems. The starting point for the numerical scheme is the boundary integral equation reformulation of this problem as an integral equation of the second kind on the real line in Preston et al. (2008, J. Int. Equ. Appl., 20, 121–152). We present a Nystr¨om method for numerical solution of this integral equation and show stability and convergence, and we present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity from the velocity potential on the surface, a key computational step in unsteady water wave simulations. In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface is infinitely smooth. The theoretical results are illustrated by numerical experiments.