904 resultados para green fluorescent protein (GFP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.1 is a novel histone acetyltransferase that acetylates histone H3 at the K9/K14 positions. Transient transfection of macrophages containing GFP-tagged histone H1 with RFP-tagged Rv3423.1 revealed that the protein co-localizes with the chromatin in the nucleus. Co-immunoprecipitation assays confirmed that the Rv3423.1-histone interaction is specific. Rv3423.1 protein was detected in the culture filtrate of virulent but not avirulent M. tuberculosis. Infection of macrophages with recombinant Mycobacterium smegmatis constitutively expressing Rv3423.1 resulted in a significant increase in the number of intracellular bacteria. However, the protein did not seem to offer any growth advantage to free-living recombinant M. smegmatis. It is highly likely that, by binding to the host chromatin, this histone acetyltransferase from M. tuberculosis may manipulate the expression of host genes involved in anti-inflammatory responses to evade clearance and to survive in the intracellular environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Chad fisheries contributes about 13% of all fish produced by the inland and coastal states of the nation and supports a large population of fishermen and allied workers. The species of freshwater fish produced from the Lake such as Gymnarchus, Clarias and Heterotis are very popular with the fish consumers in Nigeria; hence Lake Chad processed fish is transported long distances to southern Nigerian markets. Lake Chad thus contributes significantly to the provision of fish protein and to the Green Revolution Programme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of the effect of micro impurity on crystal growth by optical microscopy has been validated. The results showed that the growth rate of a lysozyme crystal was affected even if the concentration of impurity of fluorescent-labeled lysozyme (abbreviation, F-lysozyme) was very small. Different concentrations of F-lysozyme had different effects on crystal growth rate. The growth rate decreased much more as F-lysozyme concentration increased. The density of incorporated F-lysozyme on different grown layers of a lysozyme crystal during crystal growth was obtained from the results of flat-bottomed etch pits density. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured noninvasively step velocities of elementary two-dimensional (2D) islands on {110} faces of tetragonal lysozyme crystals, under various supersaturations, by laser confocal microscopy combined with differential interference contrast microscopy. We studied the correlation between the effects of protein impurities on the growth of elementary steps and their adsorption sites on a crystal surface, using three kinds of proteins: fluorescent-labeled lysozyme (F-lysozyme), covalently bonded dimers of lysozyme (dimer), and a 18 kDa polypeptide (18 kDa). These three protein impurities suppressed the advancement of the steps. However, they exhibited different supersaturation dependencies of the suppression of the step velocities. To clarify the cause of this difference, we observed in situ the adsorption sites of individual molecules of F-lysozyme and fluorescent-labeled dimer (F-dimer) on the crystal surface by single-molecule visualization. We found that F-lysozyme adsorbed preferentially on steps (i.e., kinks), whereas F-dimer adsorbed randomly on terraces. Taking into account the different adsorption sites of F-lysozyme and F-dimer, we could successfully explain the different effects of the impurities on the step velocities. These observations strongly suggest that 18 kDa also adsorbs randomly on terraces. Seikagaku lysozyme exhibited a complex effect that could not alone be explained by the two major impurities (dimer and 18 kDa) present in Seikagaku lysozyme, indicating that trace amounts of other impurities significantly affect the step advancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique chloroplast Signal Recognition Particle (SRP) in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll-a/b binding (LHC) proteins. Our study of the thermodynamics and kinetics of the GTPases of the system demonstrates that GTPase complex assembly and activation are highly coupled in the chloroplast GTPases, suggesting they may forego the GTPase activation step as a key regulatory point. This reflects adaptations of the chloroplast SRP to the delivery of their unique substrate protein. Devotion to one highly hydrophobic family of proteins also may have allowed the chloroplast SRP system to evolve an efficient chaperone in the cpSRP43 subunit. To understand the mechanism of disaggregation, we showed that LHC proteins form micellar, disc-shaped aggregates that present a recognition motif (L18) on the aggregate surface. Further molecular genetic and structure-activity analyses reveal that the action of cpSRP43 can be dissected into two steps: (i) initial recognition of L18 on the aggregate surface; and (ii) aggregate remodeling, during which highly adaptable binding interactions of cpSRP43 with hydrophobic transmembrane domains of the substrate protein compete with the packing interactions within the aggregate. We also tested the adaptability of cpSRP43 for alternative substrates, specifically in attempts to improve membrane protein expression and inhibition of amyloid beta fibrillization. These preliminary results attest to cpSRP43’s potential as a molecular chaperone and provides the impetus for further engineering endeavors to address problems that stem from protein aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neonatal Fe receptor (FeRn) binds the Fe portion of immunoglobulin G (IgG) at the acidic pH of endosomes or the gut and releases IgG at the alkaline pH of blood. FeRn is responsible for the maternofetal transfer of IgG and for rescuing endocytosed IgG from a default degradative pathway. We investigated how FeRn interacts with IgG by constructing a heterodimeric form of the Fe (hdFc) that contains one FeRn binding site. This molecule was used to characterize the interaction between one FeRn molecule and one Fe and to determine under what conditions FeRn forms a dimer. The hdFc binds one FeRn molecule at pH 6.0 with a K_d of 80 nM. In solution and with FeRn anchored to solid supports, the heterodimeric Fe does not induce a dimer of FeRn molecules. FcRnhdFc complex crystals were obtained and the complex structure was solved to 2.8 Å resolution. Analysis of this structure refined the understanding of the mechanism of the pH-dependent binding, shed light on the role played by carbohydrates in the Fe binding, and provided insights on how to design therapeutic IgG antibodies with longer serum half-lives. The FcRn-hdFc complex in the crystal did not contain the FeRn dimer. To characterize the tendency of FeRn to form a dimer in a membrane we analyzed the tendency of the hdFc to induce cross-phosphorylation of FeRn-tyrosine kinase chimeras. We also constructed FeRn-cyan and FeRn-yellow fluorescent proteins and have analyzed the tendency of these molecules to exhibit fluorescence resonance energy transfer. As of now, neither of these analyses have lead to conclusive results. In the process of acquiring the context to appreciate the structure of the FcRn-hdFc interface, we developed a study of 171 other nonobligate protein-protein interfaces that includes an original principal component analysis of the quantifiable aspects of these interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a method for the selective introduction of fluorescent Ag nanoclusters in glass. Extinction and photoluminescence spectra show that a fraction of the Ag atoms are generated through femtosecond laser induced multiphoton reduction and then aggregate to form Ag nanoclusters after heat treatment. Red luminescence from the irradiated region is observed under blue or green laser excitation. The fluorescence can be attributed to interband transitions within Ag nanoclusters. This method provides a novel route to fabricate fluorescent nanomaterials in 3D transparent materials. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red fluorescent proteins (RFPs) have attracted significant engineering focus because of the promise of near infrared fluorescent proteins, whose light penetrates biological tissue, and which would allow imaging inside of vertebrate animals. The RFP landscape, which numbers ~200 members, is mostly populated by engineered variants of four native RFPs, leaving the vast majority of native RFP biodiversity untouched. This is largely due to the fact that native RFPs are obligate tetramers, limiting their usefulness as fusion proteins. Monomerization has imposed critical costs on these evolved tetramers, however, as it has invariably led to loss of brightness, and often to many other adverse effects on the fluorescent properties of the derived monomeric variants. Here we have attempted to understand why monomerization has taken such a large toll on Anthozoa class RFPs, and to outline a clear strategy for their monomerization. We begin with a structural study of the far-red fluorescence of AQ143, one of the furthest red emitting RFPs. We then try to separate the problem of stable and bright fluorescence from the design of a soluble monomeric β-barrel surface by engineering a hybrid protein (DsRmCh) with an oligomeric parent that had been previously monomerized, DsRed, and a pre-stabilized monomeric core from mCherry. This allows us to use computational design to successfully design a stable, soluble, fluorescent monomer. Next we took HcRed, which is a previously unmonomerized RFP that has far-red fluorescence (λemission = 633 nm) and attempted to monomerize it making use of lessons learned from DsRmCh. We engineered two monomeric proteins by pre-stabilizing HcRed’s core, then monomerizing in stages, making use of computational design and directed evolution techniques such as error-prone mutagenesis and DNA shuffling. We call these proteins mGinger0.1 (λem = 637 nm / Φ = 0.02) and mGinger0.2 (λem = 631 nm Φ = 0.04). They are the furthest red first generation monomeric RFPs ever developed, are significantly thermostabilized, and add diversity to a small field of far-red monomeric FPs. We anticipate that the techniques we describe will be facilitate future RFP monomerization, and that further core optimization of the mGingers may allow significant improvements in brightness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green scat namely as Scatophagus argus argus is a venomous aquarium fish belonging to Scatophagidae family. It can induce painful wounds in injured hand with partial paralysis to whom that touch the spines. Dorsal and ventral rough spines contain cells that produce venom with toxic activities. According to unpublished data collected from local hospitals in southern coastal region of Iran, S. argus is reported as a venomous fish. Envenomation induces clinical symptoms such as local pain, partial paralysis, erythema and itching. In the present study green scat (spotted scat) was collected from Persian Gulf coastal waters. SDS-PAGE indicated 12 distinct bands in the venom ranged between 10-250 KDa. The crude venom had hemolytic activity on human erythrocytes (1%) with an LC100 (Lytic Concentration) of about 1.7 μg. The crude venom can release 813 μg proteins from 0.5% casein. Phospholipase C activity was recorded at 3.125 μg of total venom. Our findings showed that the edematic activity remained over 48 h after injection. The purification of the venom was done by HPLC and 30 peaks were obtained within 80 min but only one peak in 68 min retention time showed hemolytic activity at 90% acetonitril was isolated. The area percentage of the hemolytic protein showed that this hemolytic protein consist of 32 percent of total proteins and its molecular weight was 72 KDa in SDS_PAGE. The results demonstrated that crude venom extracted from Iranian coastal border has different toxic and enzymatic activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Effect of two freshwater green algae species Chlorella sp. & Scenedesmus obliquus enriched (from the beginning of culture and after 96 hours) with different dosages of B group vitamins (0, 0.5, 1, and 2 ml of enriching solution per each liter of algae medium) on fecundity of Daphnia magna and growth of Rutilus frisii kutum fry were investigated in a research from spring, 2008 to autumn, 2009. First, each of the green algae species were cultured purely and massively in the Zander (Z-8+N) medium and then the nutritional value (the amount of protein, lipid, and carbohydrate) of enriched algae were meausered. In this study, enriching of Chlorella sp. & S. obliquus with a suitable mix of B group vitamins significantly improved their nutritive value. So the highest amount of nutritional value of Chlorella sp. was obtained because of enriching with dosage 0.5 ml.l-1 (366.654Kcal) and for Scenedesmus obliquus with dosage of 1 ml.l-1 (376.95Kcal). The acquired amount from control group showed an increase of respectively 42% and 11%. According to the results, increased dosages of enriching solution caused Daphnia fecundity to increase (at both stages : enrichment from the beginning of culture and after 96 hours). So the highest average of D. magna reproduction rate was obtained through being fed with Chlorella sp. and S. obliquus enriched with dosage of 2 ml enriching solution per liter of algae medium. The average fecundity of D. magna fed with Chlorella sp. enriched with dosage of 2 ml.l-1 enriching solution from the beginning of culture and after 96 hours was obtained respectively 2.128 ± 0.375 and 2.1 ± 0.69 and the average fecundity of D. magna fed with S. obliquus enriched with dosage of 2 ml enriching solution from the beginning of culture and after 96 hours was obtained respectively 2.128 ± 0.375 and 2.1 ± 0.69 which showed respectively an increase of 61 ٪, 91٪, 77 ٪, and 83٪ in proportion to the acquired amount from control group. When enriching solution was added to either algae culture medium from the beginning of culture, showed statistically significant differences (P<0.05) between dosages of 0 and 2 ml.l-1, 1 and 2 ml.l-1, and 0.5 and 2 ml enriching solution per each liter of Chlorella sp. culture medium and between dosages of 0 and 1 ml.l-1, and 0 and 2 ml enriching solution per each liter of S. obliquus culture medium. The highest average of body weight gain percentage and specific growth rate of kutum fry was obtained respectively 21.19%, 26.63%, 1.92, and 2.34 from the beginning of culture and after 96 hours with dosage of 1 ml B group vitamins per each liter of Chlorella sp. culture medium, which showed respectively an increase of 50%, 70%, 46%, and 62% in proportion to the acquired amount from control group. In the cases which Chlorella sp. were grown in the medium containing vitamin, from point of view of the average percentage of weight and specific growth rate of kutum fry significant differences were observed on the basis of the result of One-way ANOVA between dosages of 0 and 1, 1 and 2 , 0.5 and 1 ml B group vitamins per each liter. The highest average of body weight gain percentage and specific growth rate of kutum fry was obtained respectively 32.02%, 29.42%, 2.78, and 2.34 from the beginning of culture and after 96 hours with dosage of 2 ml B group vitamins per each liter of S. obliquus culture medium, which showed respectively an increase of 32%, 19%, 28%, and 17% in proportion to the acquired amount from control group. In the cases which S. obliquus were grown in the medium containing vitamin, from point of view of the average percentage of weight and specific growth rate of kutum fry significant differences were observed on the basis of the result of One-way ANOVA between dosages of 0 and 1, 0 and 2. According to the results of the present research we can say that considerable enhancement in the quality of the food of D. magna can be made by manipulation of the nutritional value of fresh water unicellular green algae with suitable mixture of B group vitamins, so that both the fecundity of D. magna will increase and the nutritional requirements of the kutum fry will be filled in this way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In adaptation to new environments, organisms may accumulate mutations within encoding sequences to modify protein characteristics or acquire mutations within regulatory sequences to alter gene expression levels. With the development of antifreeze capability as the example, this study presents the evidence that change in gene expression level is probably the most important mechanism for adaptive evolution in a green alga Chlorella vulgaris. C. vulgaris NJ-7, an isolate from Antarctica, possesses an 18S rRNA sequence identical to that of a temperate isolate, SAG211-11b/UTEX259, but shows much higher freeze tolerance than the later isolate. The chromosomal DNA/cDNA of four antifreeze genes, namely hiC6, hiC12, rpl10a and hsp70, from the two isolates of C. vulgaris were cloned and sequenced, and very few variations of deduced amino acid sequences were found. In contrast, the transcription of hiC6, hiC12 and rpl10a was greatly intensified in NJ-7 compared to that in UTEX259, which is correlated to the significantly enhanced freeze tolerance of the Antarctica isolate. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of thymidine kinase (TK) is a feature of many large DNA viruses. Here, a TK gene homologue was cloned and characterized from Rana grylio virus (RGV), a member of family Iridoviridae. RGV TK encodes a protein of 195 aa with a predicted molecular mass of 22.1 kDa. Homologues of the protein were present in all the currently sequenced iridoviruses, and phylogenetic analysis showed that it was much close to cellular TK type 2 (TK2), deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Subsequently, Western blotting revealed TK expression increased with time from 6 h post-infection in RGV-infected cells. Using drug inhibition analysis by protein synthesis inhibitor (cycloheximide) and DNA replication inhibitor (cytosine arabinofuranoside), RGV TK was classified as the early expression gene during in vitro infection. Subcellular localization by TK-GFP fusion protein expression and immunofluorescence staining showed RGV TK was an exclusively cytoplasmic protein in fish cells. Collectively, current data indicate that RGV TK was an early gene of iridovirus which encoded a cytoplasmic protein in fish cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, 53R, was cloned and characterized from Rana grylio virus (RGV), a member of the family Iridoviridae. Database searches found its homologues in all sequenced iricloviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV 53R is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R-GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.