820 resultados para global virtual engineering teams (GVETs)
Resumo:
Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.
Resumo:
Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown. In this study, two TLDs were affixed to the inner lumen of standard rectal catheters used in VC, and in-vivo rectal dose measurements were obtained within 6 VC patients. In order to calculate rectal dose, TLD-100 powder response was characterized at diagnostic doses such that appropriate correction factors could be determined for VC. A third-order polynomial regression with a goodness of fit factor of R2=0.992 was constructed from this data. Rectal dose measurements were acquired with TLDs during simulated VC within a modified anthropomorphic phantom configured to represent three sizes of patients undergoing VC. The measured rectal doses decreased in an exponential manner with increasing phantom effective diameter, with R2=0.993 for the exponential regression model and a maximum percent coefficient of variation (%CoV) of 4.33%. In-vivo measurements yielded rectal doses ranged from that decreased exponentially with increasing patient effective diameter, in a manner that was also favorably predicted by the size specific dose estimate (SSDE) model for all VC patients that were of similar age, body composition, and TLD placement. The measured rectal dose within a younger patient was favorably predicted by the anthropomorphic phantom dose regression model due to similarities in the percentages of highly attenuating material at the respective measurement locations and in the placement of the TLDs. The in-vivo TLD response did not increase in %CoV with decreasing dose, and the largest %CoV was 10.0%.
Resumo:
The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.
Resumo:
The international orthopaedic community aims to achieve the best possible outcome for patient care by constantly modifying surgical techniques and expanding the surgeon's knowledge. These efforts require proper reflection within a setting that necessitates a higher quality standard for global orthopaedic publication. Furthermore, these techniques demand that surgeons acquire information at a rapid rate while enforcing higher standards in research performance. An international consensus exists on how to perform research and what rules should be considered when publishing a scientific paper. Despite this global agreement, in today's "Cross Check Era", too many authors do not give attention to the current standards of systematic research. Thus, the purpose of this paper is to describe these performance standards, the available choices for orthopaedic surgeons and the current learning curve for seasoned teams of researchers and orthopaedic surgeons with more than three decades of experience. These lead to provide an accessible overview of all important aspects of the topics that will significantly influence the research development as we arrive at an important globalisation era in orthopaedics and trauma-related research.
Resumo:
Potential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.
Resumo:
The main aim of the methodology presented in this paper is to provide a framework for a participatory process for the appraisal and selection of options to mitigate desertification and land degradation. This methodology is being developed within the EU project DESIRE (www.desire-project.eu/) in collaboration with WOCAT (www.wocat.org). It is used to select promising conservation strategies for test-implementation in each of the 16 degradation and desertification hotspot sites in the Mediterranean and around the world. The methodology consists of three main parts: In a first step, prevention and mitigation strategies already applied at the respective DESIRE study site are identified and listed during a workshop with representatives of different stakeholders groups (land users, policy makers, researchers). The participatory and process-oriented approach initiates a mutual learning process among the different stakeholders by sharing knowledge and jointly reflecting on current problems and solutions related to land degradation and desertification. In the second step these identified, locally applied solutions (technologies and approaches) are assessed with the help of the WOCAT methodology. Comprehensive questionnaires and a database system have been developed to document and evaluate all relevant aspects of technical measures as well as implementation approaches by teams of researchers and specialists, together with land users. This research process ensures systematic assessing and piecing together of local information, together with specific details about the environmental and socio-economic setting. The third part consists of another stakeholder workshop where promising strategies for sustainable land management in the given context are selected, based on the best practices database of WOCAT, including the evaluated locally applied strategies at the DESIRE sites. These promising strategies will be assessed with the help of a selection and decision support tool and adapted for test-implementation at the study site.
Resumo:
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.
Resumo:
BACKGROUND E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. OBJECTIVE This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. METHODS A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. RESULTS Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. CONCLUSIONS Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.
Resumo:
Course materials for e-learning are a special type of information system (IS). Thus, in the development of educational material one may learn from principles, methods, and tools that originated in the Software Engineering (SE) discipline and that are relevant in similar ways in "Instructional Engineering". An important SE principle is mo dularization, which supports properties like reusability and adaptability of code. To foster the adaptability of courseware we present a concept in which learning material is organized as a library of modular course objects. A certain lecturer may customize the courseware according to his specific course requirements. He must consider logical dependencies of and relationship integrity between selected course objects. We discuss integrity issues that have to be regarded for the composition of consistent course materials.
Resumo:
This tool is designed to help assessment teams, project managers, supervisors, and providers collect detailed information on the quality of Postabortion Care (PAC) services provided to adolescents at a given facility in order to make services more youth-friendly. It can also be used before PAC services have been established to see how best to design PAC services to meet youth’s needs. The assessment process facilitates the development of action plans for quality improvement that can help facilities address policy, operations, training, and other program areas needing adjustments and change. The tool also provides essential baseline information, allowing for repeated applications to measure changes and the impact of program interventions. Although the tool is primarily for use by a team, it may also be used by an individual.
Resumo:
El propósito del estudio fue analizar el nivel de conocimiento y dominio sobre el doping que tienen las deportistas élite en México, para emprender acciones que permitan educar a los deportistas y su equipo de entrenamiento en el juego limpio, a través de acciones psicopedagógicas que faciliten un aprendizaje significativo, evitando que las deportistas usen de manera voluntaria o involuntaria sustancias y métodos prohibidos. Las pregunta principal que orientó la investigación fue la siguiente: ¿Qué nivel de conocimiento y dominio sobre el doping tienen las deportistas élite en México?. Para la investigación de campo, se elaboró un cuestionario de 22 preguntas para explorar el nivel de conocimiento y dominio que tenían los deportistas considerados élite por pertenecer a la selección estatal o nacional de los deportes de gimnasia olímpica, tiro con arco y hockey sobre pasto. Las respuestas encontradas demuestran que en algunos aspectos existe desconocimiento en materia de dopaje, y se devela la necesidad de profundizar en el programa de educación antidoping. Se manifiesta que la ignorancia que existe en diferentes aspectos, pone en riesgo a los deportistas en el uso inconsciente de sustancias y métodos prohibidos en el deporte
Resumo:
El propósito del estudio fue analizar el nivel de conocimiento y dominio sobre el doping que tienen las deportistas élite en México, para emprender acciones que permitan educar a los deportistas y su equipo de entrenamiento en el juego limpio, a través de acciones psicopedagógicas que faciliten un aprendizaje significativo, evitando que las deportistas usen de manera voluntaria o involuntaria sustancias y métodos prohibidos. Las pregunta principal que orientó la investigación fue la siguiente: ¿Qué nivel de conocimiento y dominio sobre el doping tienen las deportistas élite en México?. Para la investigación de campo, se elaboró un cuestionario de 22 preguntas para explorar el nivel de conocimiento y dominio que tenían los deportistas considerados élite por pertenecer a la selección estatal o nacional de los deportes de gimnasia olímpica, tiro con arco y hockey sobre pasto. Las respuestas encontradas demuestran que en algunos aspectos existe desconocimiento en materia de dopaje, y se devela la necesidad de profundizar en el programa de educación antidoping. Se manifiesta que la ignorancia que existe en diferentes aspectos, pone en riesgo a los deportistas en el uso inconsciente de sustancias y métodos prohibidos en el deporte