931 resultados para genomic
Resumo:
Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.
Resumo:
Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.
Resumo:
Skin tumors can arise as a result of cumulative genetic abnormalities, including chromosomal aberrations that can be described as either morphological (structural rearrangements) or molecular (copy number variations). Cytogenetic techniques have been used to examine both large and small chromosomal aberrations, and include karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization. This chapter describes the recurrent aberrations associated with skin tumors, such as benign melanocytic nevi, melanoma, basal cell carcinoma, squamous cell carcinoma, actinic (solar) keratosis, Bowen’s disease, keratoacanthoma, Merkel cell carcinoma, dermatofibrosarcoma protuberans, and cutaneous lymphomas, as detected by cytogenetic methodologies. A significant number of genomic aberrations are shared across different subtypes of skin tumors, including structural and numerical alterations of chromosome 1, −3p, +3q, +6, +7, +8q, −9p, +9q, −10, −17p, +17q and +20. Aberrations specific to certain skin cancers have also been detected, and include: loss of 18q in squamous cell carcinoma, but not its precursor, actinic keratosis; loss of 9q22 in sporadic basal cell carcinoma; and translocation involving 17q22 and 22q13 in dermatofibrosarcoma protuberans. These regions contain a number of potential candidate genes that are involved in aspects of cell signaling, proliferation, differentiation, and apoptosis. Cytogenetic methodologies continue to evolve with the advent of array-based comparative genomic hybridization, copy number variation microarrays, and next-generation sequencing. It is envisioned that cytogenetic analysis will continue to be employed for identification and further exploration of novel chromosomal regions and associated genes that drive skin tumorigenesis.
Resumo:
Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.
Resumo:
Background Loss of heterozygosity (LOH) is an important marker for one of the 'two-hits' required for tumor suppressor gene inactivation. Traditional methods for mapping LOH regions require the comparison of both tumor and patient-matched normal DNA samples. However, for many archival samples, patient-matched normal DNA is not available leading to the under-utilization of this important resource in LOH studies. Here we describe a new method for LOH analysis that relies on the genome-wide comparison of heterozygosity of single nucleotide polymorphisms (SNPs) between cohorts of cases and un-matched healthy control samples. Regions of LOH are defined by consistent decreases in heterozygosity across a genetic region in the case cohort compared to the control cohort. Methods DNA was collected from 20 Follicular Lymphoma (FL) tumor samples, 20 Diffuse Large B-cell Lymphoma (DLBCL) tumor samples, neoplastic B-cells of 10 B-cell Chronic Lymphocytic Leukemia (B-CLL) patients and Buccal cell samples matched to 4 of these B-CLL patients. The cohort heterozygosity comparison method was developed and validated using LOH derived in a small cohort of B-CLL by traditional comparisons of tumor and normal DNA samples, and compared to the only alternative method for LOH analysis without patient matched controls. LOH candidate regions were then generated for enlarged cohorts of B-CLL, FL and DLBCL samples using our cohort heterozygosity comparison method in order to evaluate potential LOH candidate regions in these non-Hodgkin's lymphoma tumor subtypes. Results Using a small cohort of B-CLL samples with patient-matched normal DNA we have validated the utility of this method and shown that it displays more accuracy and sensitivity in detecting LOH candidate regions compared to the only alternative method, the Hidden Markov Model (HMM) method. Subsequently, using B-CLL, FL and DLBCL tumor samples we have utilised cohort heterozygosity comparisons to localise LOH candidate regions in these subtypes of non-Hodgkin's lymphoma. Detected LOH regions included both previously described regions of LOH as well as novel genomic candidate regions. Conclusions We have proven the efficacy of the use of cohort heterozygosity comparisons for genome-wide mapping of LOH and shown it to be in many ways superior to the HMM method. Additionally, the use of this method to analyse SNP microarray data from 3 common forms of non-Hodgkin's lymphoma yielded interesting tumor suppressor gene candidates, including the ETV3 gene that was highlighted in both B-CLL and FL.
Resumo:
Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. () tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over-represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.
Resumo:
Migraine with aura (MA) is a subtype of typical migraine. Migraine with aura (MA) also encompasses a rare severe subtype Familial Hemiplegic Migraine (FHM) with several known genetic loci. The type 2 FHM (FHM-2) susceptibility locus maps to chromosome 1q23 and mutations in the ATP1A2 gene at this site have recently been implicated. We have previously provided evidence of linkage of typical migraine (predominantly MA) to microsatellite markers on chromosome 1, in the 1q31 and 1q23 regions. In this study, we have undertaken a large genomic investigation involving candidate genes that lie within the chromosome 1q23 and 1q31 regions using an association analysis approach. Methods We have genotyped a large population of case-controls (243 unrelated Caucasian migraineurs versus 243 controls) examining a set of 5 single nucleotide polymorphisms (SNPs) and the Fas Ligand dinucleotide repeat marker, located within the chromosome 1q23 and 1q31 regions. Results Several genes have been studied including membrane protein (ATP 1 subtype A4 and FasL), cytoplasmic glycoprotein (CASQ 1) genes and potassium (KCN J9 and KCN J10) and calcium (CACNA1E) channel genes in 243 migraineurs (including 85% MA and 15% of migraine without aura (MO)) and 243 matched controls. After correction for multiple testing, chi-square results showed non-significant P values (P > 0.008) across all SNPs (and a CA repeat) tested in these different genes, however results with the KCN J10 marker gave interesting results (P = 0.02) that may be worth exploring further in other populations. Conclusion These results do not show a significant role for the tested candidate gene variants and also do not support the hypothesis that a common chromosome 1 defective gene influences both FHM and the more common forms of migraine.
Resumo:
Migraine is a common idiopathic primary headache disorder with significant mental, physical and social health implications. Accompanying an intense unilateral pulsating head pain other characteristic migraine symptoms include nausea, emesis, phonophobia, photophobia and in approximately 20-30% of migraine cases, neurologic disturbances associated with the aura phase. Although selective serotonin (5-HT) receptor agonists (i.e., 5-HT(1B/1D)) are successful in alleviating migrainous symptoms in < or = 70% of known sufferers, for the remaining 30%, additional migraine abortive medications remain unsuccessful, not tested or yet to be identified. Genetic characterization of the migrainous disorder is making steady progress with an increasing number of genomic susceptibility loci now identified on chromosomes 1q, 4q, 5q, 6p, 11q, 14q, 15q, 17p, 18q, 19p and Xq. The 4q, 5q, 17p and 18q loci involve endophenotypic susceptibility regions for various migrainous symptoms. In an effort to develop individualized pharmacotherapeutics, the identification of these migraine endophenotypic loci may well be the catalyst needed to aid in this goal. In this review the authors discuss the present treatment of migraine, known genomic susceptibility regions and results from migraine (genetic) association studies. The authors also discuss pharmacogenomic considerations for more individualized migraine prophylactic treatments.
Resumo:
The aim of this study was to investigate through direct sequencing the insulin receptor (INSR) gene in DNA samples from a migraine affected family previously showing linkage to chromosome 19p13 in an attempt to detect disease associated mutations. Migraine is a common debilitating disorder with a significant genetic component. At present, the number and type of genes involved in the common forms of migraine are not clear. The INSR gene on chromosome 19p13.3-13.2 is a gene of interest since a number of single nucleotide polymorphisms (SNPs) located within the gene have been implicated in migraine with (MA) and without aura (MO). Six DNA samples obtained from non-founding migraine affected members of migraine family 1 (MF1) were used in this study. Genomic DNA was sequenced for the INSR gene in exons 1-22 and the promoter region. In the six migraine family member samples, previously reported SNPs were detected within two exonic DNA coding regions of the INSR gene. These SNPs, in exons 13 and 17, do not alter the normal INSR polypeptide sequence. In addition, intron 7 also revealed a DNA base sequence variation. For the 5' untranslated promoter region of the gene, no mutations or polymorphisms were detected. In conclusion, this study detected no INSR mutations in affected members of a chromosome 19 linked migraine pedigree. Hence, migraine linkage to this chromosomal region may involve other candidate genes.
Resumo:
Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.
Resumo:
This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the β-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the β-actin and 28S markers, with the exception of Sus scrofa (pig) β-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.
Resumo:
Migraine is a common complex disorder characterized by severe recurrent headache and usually accompanied by nausea and vomiting. Previous studies in our laboratory have utilized three large multigenerational Australian pedigrees affected with migraine to indicate that the disease is genetically heterogeneous, with linkage results implicating genomic susceptibility regions on both chromosomes 19p and Xq. The present study explores the possibility of a correlation between genetic and clinical heterogeneity in these affected pedigrees. Specifically, the clinical characteristics of migraine including subtype, age of onset, frequency, duration, and disease symptoms were compared between the migraine pedigrees, and gender differences were also assessed. Our exploratory analyses revealed no significant differences in any of the clinical characteristics tested between the chromosome 19-linked family and the two X-linked families. Also, we did not detect any differences in male vs. female clinical features for these pedigrees. In conclusion, migraine is considered to be a clinically and genetically heterogeneous disorder; however, our study provided no conclusive evidence that variation in genomic susceptibility region is related to heterogeneity at the clinical level in these migraine-affected pedigrees.
Resumo:
Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT1B/1D agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease. Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.
Resumo:
Migraine (with and without aura) is a prevalent neurovascular disease that shows strong familial aggregation, although the number of genes involved and the mode of inheritance is not clear. Some insight into the disease has been gained from genetic studies into a rare and very severe migraine subtype known as familial hemiplegic migraine (FHM). In this study, we took a family-based linkage and association approach to investigate the FHM susceptibility region on chromosome 1q31 for involvement in typical migraine susceptibility in affected Australian pedigrees. Initial multipoint ALLEGRO analysis provided strong evidence for linkage of Chrlq31 markers to typical migraine in a large multigenerational pedigree. The 1-LOD* unit support interval for suggestive linkage spanned approximately 18 cM with a maximum allele sharing LOD* score of 3.36 obtained for marker D1S2782 (P=0.00004). Subsequent analysis of an independent sample of 82 affected pedigrees added support to the initial findings with a maximum LOD* of 1.24 (P=0.008). Utilising the independent sample of 82 pedigrees, we also performed a family-based association test. Results of this analysis indicated distortion of allele transmission at marker D1S249 [global chi2 (5) of 15.00, P=0.010] in these pedigrees. These positive linkage and association results will need further confirmation by independent researchers. However, overall they provide good evidence for the existence of a typical migraine locus near these markers on Chrlq3l, and reinforce the idea that an FHM gene in this genomic region may also contribute to susceptibility to the more common forms of migraine.
Resumo:
Essential hypertension is a common multifactorial trait that results in a significantly increased risk for heart attack and stroke. The condition has a genetic basis, although at present the number of genes is unknown. In order to identify such genes, we are utilising a linkage scanning approach using microsatellite markers and affected sibships. Here we provide evidence for the location of at least one hypertension susceptibility locus on chromosome 17. Analysis of 177 affected sibpairs gave evidence for significant excess allele sharing to D17S949 (SPLINK: P=0.0029; MAPMAKER SIBS: P=0.0033; ASPEX: P=0.0061; GENEHUNTER: P=0.0096; ANALYZE (SIBPAIR): P=0.0025) on 17q22–24, with significant allele sharing also indicated for an additional marker, D17S799 (SPLINK: P=0.025; MAPMAKER SIBS: P= 0.025) located close to the centromere. Since these two genomic regions are well separated, our results indicate that there may be more than one chromosome 17 locus affecting human blood pressure. Moreover, further investigation of this chromosome, utilizing a polymorphism within the promoter of the iNOS candidate gene, NOS2A, revealed both increased allele sharing among sibpairs (SPLINK: P=0.02; ASPEX: P=0.00004) and positive association (P= 0.034) of NOS2A to essential hypertension. Hence these results indicate that chromosome 17 and, more specifically, the NOS2A gene may play a role in human essential hypertension.