923 resultados para generic substitution
Resumo:
We examined whether single-nucleotide polymorphisms (SNPs) in the calpain (CAPN) and calpastatin (CAST) genes, described from Bos primigenius taurus, are polymorphic in Nellore cattle. We also looked for a possible association of linkage disequilibrium of this polymorphism with tenderness of the longissimus dorsi muscle after 7, 14 and 21 days of postmortem aging in 638 purebred Nellore bulls. Meat tenderness was measured as Warner-Bratzler shear force. Additive and dominance effects were tested for SNPs of the three genotypic classes; the substitution effect was tested for SNPs with missing genotypic classes. Genotypic and gene frequencies were also calculated for the different SNPs. An increase in tenderness was observed from 7 to 21 days; the average values for shear force at 7, 14 and 21 days of aging were 5.92 +/- 0.06, 4.92 +/- 0.05, and 4.38 +/- 0.04 kg, respectively. All markers showed polymorphism, but there was no CC genotype for CAPN316, and few animals showed the AA genotype for CAPN530. The alleles CAPN4751, UOGCAST1, and WSUCAST were found to have additive and dominance effects for shear force at 7, 14 and 21 days, while CAPN316 showed a substitution effect for shear force at 7 and 21 days. An additive-by-additive epistatic interaction was observed between CAPN4751 and markers on the CAST gene. In conclusion, these markers should be considered for use in breeding programs.
Resumo:
The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (Mempty set) subsets, namely small peritoneal Mempty set (SPM) and large peritoneal Mempty set (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for beta-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-gamma stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal Mempty set subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R(2)=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N(CCN,0.10)approximate to 35 cm(-3) to N(CCN,0.82)approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N(CN,30)approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N(CCN,0.10/NCN,30)approximate to 0.1 to N(CCN,0.82/NCN,30)approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N(CCN,S) assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
Resumo:
We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation-and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-a-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.
Resumo:
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.
Resumo:
We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
We study quasinormal modes and scattering properties via calculation of the S matrix for scalar and electromagnetic fields propagating in the background of spherically symmetric and axially symmetric traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the general Morris-Thorne ansatz. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r) and shift factor Phi(r) near the throat. In particular, wormholes with the shape function b(r), such that b(dr) approximate to 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by-product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes gives quite high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.
Resumo:
We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.
Resumo:
Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
In the present work, cellulose obtained from sisal, which is a source of rapid growth, was used. Cellulose acetates were produced in heterogeneous medium, using acetic anhydride as esterifying agent and iodine as catalyst, to check if the procedure described in the literature for commercial cellulose also is adequate to sisal cellulose. The results indicated that iodine is an excellent catalyst to obtain sisal cellulose acetates, but the reaction is so fast as described in the literature when, instead of sisal, lower average molar weight cellulose (microcrystalline) is used. The crystallinity index (I(c)) of sisal cellulose acetates diminished compared to sisal cellulose, but there was no direct correlation between their degree of substitution (DS) and I(c). Probably acetyl groups were introduced more homogeneously along the short chains of microcrystalline cellulose, when compared to sisal cellulose, and then for microcrystalline cellulose acetates the Ic decreases as DS increases. Using the linear correlation that was found between degree of substitution (DS) and time reaction is possible to control the DS of sisal cellulose acetates, considering a large interval of degrees of substitution (0.3-2.8).
Resumo:
The present work describes an investigation concerning the acetylation of celluloses extracted from short-life-cycle plant sources (i.e. sugarcane bagasse and sisal fiber) as well as microcrystalline cellulose. The acetylation was carried out under homogeneous conditions using the solvent system N,N-dimethylacetamide/lithium chloride. The celluloses were characterized, and the characterizations included an evaluation of the amount of hemicellulose present in the materials obtained from lignocellulosics sources (sugarcane and sisal). The amount of LiCl was varied and its influence on the degree of acetate substitution was analyzed. It was found that the solvent system composition and the nature of the cellulose influenced both the state of chain dissolution and the product characteristics. The obtained results demonstrated the importance of developing specific studies on the dissolution process as well as on the derivatization of celluloses from various sources.
Resumo:
Morphological and molecular analyses have proven to be complementary tools of taxonomic information for the redescription of the ctenostome bryozoans Amathia brasiliensis Busk, 1886 and Amathia distans Busk, 1886. The two species, originally described from material collected by the `Challenger` expedition but synonymized by later authors, now have their status fixed by means of the selection of lectotypes, morphological observations and analyses of DNA sequences described here. The morphological characters allowing the identification of living and/or preserved specimens are (1) A. brasiliensis: whitish-pale pigment spots in the frontal surface of stolons and zooids, and a wide stolon with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it, the spirality direction being maintained from maternal to daughter stolons; and (2) A. distans: bright yellow pigment spots in stolonal and zooidal surfaces including lophophores, and a slender stolon, thickly cuticularized, with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it and the spirality direction not maintained from maternal to daughter stolons. Pairwise comparisons of DNA sequences of the mitochondrial genes cytochrome c oxidase subunit I and large ribosomal RNA subunit revealed deep genetic divergence between A. brasiliensis and A. distans. Finally, analyses of those sequences within a Bayesian phylogenetic context recovered their genealogical species status.