628 resultados para gasoline


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of CNG (Compressed Natural Gas) as automotive fuel began in Italy as early as in mid- 1930s, and ever since the Italian market has always been highly advanced in this regard. Many other countries followed, some of them quite recently, but nevertheless with impressive results. The appeal of this automotive fuel is based on the fact that compared to gasoline, diesel and LPG (Liquefied Petroleum Gas), CNG is cleaner and cheaper; even more so, this fuel is renewable – it can be produced locally from biogas. Despite its obvious benefits, CNG is barely present in Hungary. This article provides an insight into the topic, highlights obstacles to introduction and suggests appropriate governmental steps. The information is intended to support the activities and the decision-making process of governmental officials, municipalities, car-fleet managers, car dealers and their service departments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have shown that the environmental conditions of the home are important predictors of health, especially in low-income communities. Understanding the relationship between the environment and health is crucial in the management of certain diseases. One health outcome related to the home environment among urban, minority, and low-income children is childhood lead poisoning. The most common sources of lead exposure for children are lead paint in older, dilapidated housing and contaminated dust and soil produced by accumulated residue of leaded gasoline. Blood lead levels (BLL) as low as 10 μg/dL in children are associated with impaired cognitive function, behavior difficulties, and reduced intelligence. Recently, it is suggested that the standard for intervention be lowered to BLL of 5 μg /dl. The objectives of our report were to assess the prevalence of lead poisoning among children under six years of age and to quantify and test the correlations between BLL in children and lead exposure levels in their environment. This cross-sectional analysis was restricted to 75 children under six years of age who lived in 6 zip code areas of inner city Miami. These locations exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Using the 5 μg/dL as the cutoff point, the prevalence of lead poisoning among the study sample was 13.33%. The study revealed that lead levels in floor dust and window sill samples were positively and significantly correlated with BLL among children (p < 0.05). However, the correlations between BLL and the soil, air, and water samples were not significant. Based on this pilot study, a more comprehensive environmental study in surrounding inner city areas is warranted. Parental education on proper housecleaning techniques may also benefit those living in the high lead-exposed communities of inner city Miami.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contamination of groundwater by BTX has been featured in recent decades. This type of contamination is due to small and continuous leaks at gas stations, causing serious problems to public health and the environment. Based on these antecedents, the search for new alternatives for treating contaminated water is shown to be essential. Therefore, this study aimed to evaluate the efficiency of removal of BTX by adsorption processes employing commercial alumina (Al2O3) and alumina supported with iron (Fe/Al2O3) as adsorbents. It was prepared by a in a synthetic gasoline solution and distilled water to simulate an actual sample. Initially, the adsorbents were characterized by techniques XRD, TG / DTG, XRF, FTIR and SEM/EDS, several trials, where he was placed synthetic solution to react in the presence of Al2O3 and Fe/Al2O3 in a closed, mechanical stirring system were performed varying the catalyst concentration 2, 4 and 6 g.L-1 every 0, 10, 30 60, 90 and 120 min, aliquots were taken and brought to analysis by gas chromatography flame ionization with headspace extraction. The results indicated that the absorbent which has higher BTX removal capacity was the Fe/Al2O3 at a concentration of 6 g.L-1, pH = 4 and time of 90 minutes reaction, resulting in an efficiency, resulting in a 86,5% efficiency for benzene removal, for the 95,4% toluene, 90,8% for ɱ,ρ- xylene and 93.7% for the θ-xylenes. Subsequently, we performed a kinetic study of the reactions, the values of experimental adsorption capacity (qe) showed agreement with the values of the theoretical adsorption capacity (qc) to the pseudo-second-order model in the adsorption tests using 2 and 6 gL-1 of Al2O3 and assays using 2, 4 and 6 g.L-1 of Fe/Al2O3. A fact corroborated by the R2 values, thus indicating that the chemical interactions are present in the adsorption mechanisms of BTX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. nowhere landscape, for clarinets, trombones, percussion, violins, and electronics

nowhere landscape is an eighty-minute work for nine performers, composed of acoustic and electronic sounds. Its fifteen movements invoke a variety of listening strategies, using slow change, stasis, layering, coincidence, and silence to draw attention to the sonic effects of the environment—inside the concert hall as well as the world outside of it. The work incorporates a unique stage set-up: the audience sits in close proximity to the instruments, facing in one of four different directions, while the musicians play from a number of constantly-shifting locations, including in front of, next to, and behind the audience.

Much of nowhere landscape’s material is derived from a collection of field recordings

made by the composer during a road trip from Springfield, MA to Douglas, WY along US- 20, a cross-country route made effectively obsolete by the completion of I-90 in the mid- 20th century. In an homage to artist Ed Ruscha’s 1963 book Twentysix Gasoline Stations, the composer made twenty-six recordings at gas stations along US-20. Many of the movements of nowhere landscape examine the musical potential of these captured soundscapes: familiar and anonymous, yet filled with poignancy and poetic possibility.

2. “The Map and the Territory: Documenting David Dunn’s Sky Drift”

In 1977, David Dunn recruited twenty-six musicians to play his work Sky Drift in the

Anza-Borrego Desert in Southern California. This outdoor performance was documented with photos and recorded with four stationary microphones to tape. A year later, Dunn presented the work in New York City as a “performance/documentation,” playing back the audio recording and projecting slides. In this paper I examine the consequences of this kind of act: what does it mean for a recording of an outdoor work to be shared at an indoor concert event? Can such a complex and interactive experience be successfully flattened into some kind of re-playable documentation? What can a recording capture and what must it exclude?

This paper engages with these questions as they relate to David Dunn’s Sky Drift and to similar works by Karlheinz Stockhausen and John Luther Adams. These case-studies demonstrate different solutions to the difficulty of documenting outdoor performances. Because this music is often heard from a variety of equally-valid perspectives—and because any single microphone only captures sound from one of these perspectives—the physical set-up of these kind of pieces complicate what it means to even “hear the music” at all. To this end, I discuss issues around the “work itself” and “aura” as well as “transparency” and “liveness” in recorded sound, bringing in thoughts and ideas from Walter Benjamin, Howard Becker, Joshua Glasgow, and others. In addition, the artist Robert Irwin and the composer Barry Truax have written about the conceptual distinctions between “the work” and “not- the-work”; these distinctions are complicated by documentation and recording. Without the context, the being-there, the music is stripped of much of its ability to communicate meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.

Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.

Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.

Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study, we establish centennial records of anthropogenic lead pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by means of lead deposited in shells of the long-lived bivalve Arctica islandica. Due to local oceanographic and geological conditions we conclude that the lead concentrations in the Icelandic shell reflect natural influxes of lead into Icelandic waters. In comparison, the lead profile of the US shell is clearly driven by anthropogenic lead emissions transported from the continent to the ocean by westerly surface winds. Lead concentrations in the European North Sea shell, in contrast, are dominantly driven by local lead sources resulting in a much less conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the three shells are driven by different influxes of lead, and yet, all support the applicability of Pb/Ca analyses of A. islandica shells to reconstruct location specific anthropogenic lead pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pb and Ba concentrations and Pb isotopic compositions are reported for firn core and snow pit samples from Victoria Land, Antarctica, dating from 1872 AD to 1994 AD. From variations in Pb/Ba ratios and Pb isotopic compositions, two periods of major Pb enhancements were identified, from 1891 to 1908 AD and from 1948 to 1994 AD. The earlier pollution event is attributed to Pb emissions from non-ferrous metal production and coal combustion in the Southern Hemisphere and is in excellent agreement with coincident pollution inputs reported in firn/ice cores from two other regions of Antarctica, at Coats Land and Law Dome. Using Pb isotopic systematics, it was calculated that ~50% of Pb deposited in Victoria Land in 1897 originated from anthropogenic emission sources. The more recent period of Pb enhancements, from 1948 to 1994 AD, corresponds to the introduction and widespread use of gasoline alkyl Pb additives in automobiles in the Southern Hemisphere, with anthropogenic Pb inputs averaging 60% of total Pb but with large uncertainty. Intra- and inter-annual variations in Pb concentrations and isotopic compositions were evaluated in snow pits samples corresponding to the period 1991-1994. Substantial variations in Pb/ Ba and 206Pb/207Pb ratios were detected but the absence of a regular seasonal pattern for these parameters suggests that the transport and deposition of aerosols to the Antarctic ice sheet are complex and vary from year to year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.