967 resultados para finite integral transform technique
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Dissertação apresentada para a obtenção do grau de Mestre em Educação - Área de Especialização em Didática das Ciências
Resumo:
An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 3 de Fevereiro de 2016, Universidade dos Açores.
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino da Dança.
Resumo:
Purpose - To verify the results of a diaphragmatic breathing technique (DBT) on diaphragmatic range of motion in healthy subjects. Methods - A total of 51 healthy subjects (10 male; 41 female), mean age 20 years old and a body mass index (BMI) ranging from 15.6 to 34.9 kg/m2, were enrolled in this study. Diaphragmatic range of motion was assessed by M-mode ultrasound imaging. Measurements were made before and after the DBT implementation in a standard protocol, based on 3 seconds of inspiration starting from a maximum expiration. Differences between assessments were analyzed by descriptive statistics and t-test (p < 0.05). Results - Mean value range of motion before DBT was 55.3 ± 13.4 mm and after DBT was 63.8 ± 13.2 mm showing a significant improvement of 8.5 ± 14.7 mm (p < 0.001). A strong correlation between the slope and the range of motion was found (r = 0.71, p < 0.001). Conclusions - Based on ultrasound measurements, it has been proved that DBT really contributes to a higher diaphragmatic range of motion. Future studies are needed in order to understand the influence of protocol parameters (e.g. inspiration time). Clinical implications - In the contest of evidence-based practice in physiotherapy, it has been showed by objective measurements that DBT improves the diaphragm range of motion, translating into a more efficient ventilatory function and thus can be used in clinical setting. To our knowledge this is the first study to assess the effects of DBT on range of motion of diaphragm muscle with ultrasound imaging.
Resumo:
We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Ultrassonografia Cardiovascular
Resumo:
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.