842 resultados para farm accountancy data network
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
This paper proposes a novel interference cancellation algorithm for the two-path successive relay system using network coding. The two-path successive relay scheme was proposed recently to achieve full date rate transmission with half-duplex relays. Due to the simultaneous data transmission at the relay and source nodes, the two-path relay suffers from the so-called inter-relay interference (IRI) which may significantly degrade the system performance. In this paper, we propose to use the network coding to remove the IRI such that the interference is first encoded with the network coding at the relay nodes and later removed at the destination. The network coding has low complexity and can well suppress the IRI. Numerical simulations show that the proposed algorithm has better performance than existing approaches.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, the model spatial resolution required to represent flows through a typical street network often results in an impractical computational cost at the city scale. This paper presents the calibration and evaluation of a recently developed formulation of the LISFLOOD-FP model, which is more computationally efficient at these resolutions. Aerial photography was available for model evaluation on 3 days from the 24 to the 31 of July. The new formulation was benchmarked against the original version of the model at 20 and 40 m resolutions, demonstrating equally accurate simulation, given the evaluation data but at a 67 times faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in more accurate simulation of the floodplain drying dynamics compared with the coarse resolution models, although maximum inundation levels were simulated equally well at all resolutions tested.
Resumo:
This paper deals with the selection of centres for radial basis function (RBF) networks. A novel mean-tracking clustering algorithm is described as a way in which centers can be chosen based on a batch of collected data. A direct comparison is made between the mean-tracking algorithm and k-means clustering and it is shown how mean-tracking clustering is significantly better in terms of achieving an RBF network which performs accurate function modelling.
Resumo:
The report gives an overview of the horticultural industry in the United Kingdom, including a snapshot of the different sectors of production, together with other information of interest about the business of horticulture. The data includes the economic performance of horticultural businesses in Ebgland during 2008/09.
Resumo:
Thereport gives an overview of the horticultural industry in the United Kingdom, including a snapshot of the different sectors of production, together with other information of interest about the business of horticulture. The data includes the economic perforamnce of horticulture businesses in England during 2009/10
Resumo:
The report provides a commentary on the UK poultry industry focusing on its structure, development and contribution to the UK agricultural economy. It also includes data on the economic performance of poultry businesses in England during 2008/09.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
The unparalleled collection of clinical data and biomaterials within the EHDN's REGISTRY can expedite the search for disease modifiers (genetic and environmental) of age at onset and disease progression that could be harnessed for the development of novel treatments.
Resumo:
Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.
Resumo:
Gardner's popular model of perfect competition in the marketing sector is extended to a conjectural-variations oligopoly with endogenous entry. Revising Gardner's comparative statics on the "farm-retail price ratio," tests of hypotheses about food industry conduct are derived. Using data from a recent article by Wohlgenant, which employs Gardner's framework, tests are made of the validity of his maintained hypothesis-that the food industries are perfectly competitive. No evidence is found of departures from competition in the output markets of the food industries of eight commodity groups: (a) beef and veal, (b) pork, (c) poultry, (d) eggs, (e) dairy, (f) processed fruits and vegetables, (g) fresh fruit, and (h) fresh vegetables.
Resumo:
This paper describes the method and findings of the first independent survey of smallholder farmers in the Republic of South Africa designed to explore the economic benefits of their adoption of Bt cotton. The study found that the Bt variety generally resulted in a per hectare increase in yields, value of output and reduction of pesticide costs which outweighed the increase in seed costs to give a substantial increase in gross margins. There are several surveys being carried out at the moment on different aspects of the Makhathini experience. The Monitor will be reporting on their results as these become available.