787 resultados para expert system, fuzzy logic, pan stage models, supervisory control
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
Because the knowledge in the World Wide Web is continuously expanding, Web Knowledge Aggregation, Representation and Reasoning (abbreviated as KR) is becoming increasingly important. This article demonstrates how fuzzy ontologies can be used in KR to improve the interactions between humans and computers. The gap between the Social and Semantic Web can be reduced, and a Social Semantic Web may become possible. As an illustrative example, we demonstrate how fuzzy logic and KR can enhance technologies for cognitive cities. The underlying notion of these technologies is based on connectivism, which can be improved by incorporating the results of digital humanities research.
Resumo:
Moses Jakob Ezekiel
Resumo:
En parcelas con 7 años de siembra directa continua se realizó una labor de escarificado. A los 40 días se abrieron trincheras y sobre una grilla cuadriculada se determinó la penetrometría de pared y la humedad en los perfiles de suelo. Para procesar los histogramas obtenidos en la integración de los relevamientos de resistencia a la penetración en escarificado (E) y no escarificado (NE) se utilizó el módulo fuzzy (tratamiento de imágenes de un sistema de información geográfica). Se determinaron 7 clases de compactación en cada situación, diferenciadas por promedios y rangos. La trinchera con los valores promedios fuzzy de penetrometría en E presentó 25.71 % menos de las clases consideradas más compactadas, siendo significativo el efecto de la labor en el espesor 5-25 cm. No hubo diferencias en humedad entre ambas situaciones, a excepción del estrato 30-35 cm donde -en E- fue mayor. La labor de escarificado produjo modificaciones favorables en los distintos estados de compactación de suelo, principalmente en los espesores intermedios. A través del tratamiento de lógica difusa se determinaron diferentes clases de compactación y su distribución espacial.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.
Resumo:
This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods
Resumo:
In this paper, we commence the study of the so called supplementarity measures. They are introduced axiomatically and are then related to incompatibility measures by antonyms. To do this, we have to establish what we mean by antonymous measure. We then prove that, under certain conditions, supplementarity and incompatibility measuresare antonymous. Besides, with the aim of constructing antonymous measures, we introduce the concept of involution on the set made up of all the ordered pairs of fuzzy sets. Finally, we obtain some antonymous supplementarity measures from incompatibility measures by means of involutions.
Resumo:
This paper describes a stress detection system based on fuzzy logic and two physiological signals: Galvanic Skin Response and Heart Rate. Instead of providing a global stress classification, this approach creates an individual stress templates, gathering the behaviour of individuals under situations with different degrees of stress. The proposed method is able to detect stress properly with a rate of 99.5%, being evaluated with a database of 80 individuals. This result improves former approaches in the literature and well-known machine learning techniques like SVM, k-NN, GMM and Linear Discriminant Analysis. Finally, the proposed method is highly suitable for real-time applications
Resumo:
This paper proposes a stress detection system based on fuzzy logic and the physiological signals heart rate and galvanic skin response. The main contribution of this method relies on the creation of a stress template, collecting the behaviour of previous signals under situations with a different level of stress in each individual. The creation of this template provides an accuracy of 99.5% in stress detection, improving the results obtained by current pattern recognition techniques like GMM, k-NN, SVM or Fisher Linear Discriminant. In addition, this system can be embedded in security systems to detect critical situations in accesses as cross-border control. Furthermore, its applications can be extended to other fields as vehicle driver state-of-mind management, medicine or sport training.
Resumo:
La tesis doctoral CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY constituye un conjunto de nuevas aportaciones al análisis de dos elementos básicos de la lógica fuzzy: los mecanismos de inferencia y la representación de predicados vagos. La memoria se encuentra dividida en dos partes que corresponden a los dos aspectos señalados. En la Parte I se estudia el concepto básico de «estado lógico borroso». Un estado lógico borroso es un punto fijo de la aplicación generada a partir de la regla de inferencia conocida como modus ponens generalizado. Además, un preorden borroso puede ser representado mediante los preórdenes elementales generados por el conjunto de sus estados lógicos borrosos. El Capítulo 1 está dedicado a caracterizar cuándo dos estados lógicos dan lugar al mismo preorden elemental, obteniéndose también un representante de la clase de todos los estados lógicos que generan el mismo preorden elemental. El Capítulo finaliza con la caracterización del conjunto de estados lógicos borrosos de un preorden elemental. En el Capítulo 2 se obtiene un subconjunto borroso trapezoidal como una clase de una relación de indistinguibilidad. Finalmente, el Capítulo 3 se dedica a estudiar dos tipos de estados lógicos clásicos: los irreducibles y los minimales. En el Capítulo 4, que inicia la Parte II de la memoria, se aborda el problema de obtener la función de compatibilidad de un predicado vago. Se propone un método, basado en el conocimiento del uso del predicado mediante un conjunto de reglas y de ciertos elementos distinguidos, que permite obtener una expresión general de la función de pertenencia generalizada de un subconjunto borroso que realice la función de extensión del predicado borroso. Dicho método permite, en ciertos casos, definir un conjunto de conectivas multivaluadas asociadas al predicado. En el último capítulo se estudia la representación de antónimos y sinónimos en lógica fuzzy a través de auto-morfismos. Se caracterizan los automorfismos sobre el intervalo unidad cuando sobre él se consideran dos operaciones: una t-norma y una t-conorma ambas arquimedianas. The PhD Thesis CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY is a contribution to two basic concepts of the Fuzzy Logic. It is divided in two parts, the first is devoted to a mechanism of inference in Fuzzy Logic, and the second to the representation of vague predicates. «Fuzzy Logic State» is the basic concept in Part I. A Fuzzy Logic State is a fixed-point for the mapping giving the Generalized Modus Ponens Rule of inference. Moreover, a fuzzy preordering can be represented by the elementary preorderings generated by its Fuzzy Logic States. Chapter 1 contemplates the identity of elementary preorderings and the selection of representatives for the classes modulo this identity. This chapter finishes with the characterization of the set of Fuzzy Logic States of an elementary preordering. In Chapter 2 a Trapezoidal Fuzzy Set as a class of a relation of Indistinguishability is obtained. Finally, Chapter 3 is devoted to study two types of Classical Logic States: irreducible and minimal. Part II begins with Chapter 4 dealing with the problem of obtaining a Compa¬tibility Function for a vague predicate. When the use of a predicate is known by means of a set of rules and some distinguished elements, a method to obtain the general expression of the Membership Function is presented. This method allows, in some cases, to reach a set of multivalued connectives associated to the predicate. Last Chapter is devoted to the representation of antonyms and synonyms in Fuzzy Logic. When the unit interval [0,1] is endowed with both an archimedean t-norm and a an archi-medean t-conorm, it is showed that the automorphisms' group is just reduced to the identity function.
Resumo:
Ciao is a logic-based, multi-paradigm programming system. One of its most distinguishing features is that it supports a large number of semantic and syntactic language features which can be selectively activated or deactivated for each program module. As a result, a module can be written in, for example, ISO-Prolog plus constraints and higher order, while another can be a puré logic module with a different control rule such as iterative deepening and/or tabling, and perhaps using constructive negation. A powerful and modular extensión mechanism allows user-level design and implementation of such features and sub-languages. Another distinguishing feature of Ciao is its powerful assertion language, which allows expressing many kinds of program properties (ranging from, e.g., moded types to resource consumption), as well as tests and documentation. The compiler is capable of statically ñnding violations of these properties or verifying that programs comply with them, and issuing certiñcates of this compliance. The compiler also performs many types of optimizations, including automatic parallelization. It offers very competitive performance, while retaining the flexibility and interactive development of a dynamic language. We will present a hands-on overview of the system, through small examples which emphasize the novel aspects and the motivations which lie behind Ciao's design and implementation.
Resumo:
Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs.
Resumo:
El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los controladores difusos han manejado una plataforma visual “pan-and-tilt”, un helicoptero, un coche comercial y hasta dos tipos de quadrirotores. El uso del método de optimización “Cross-Entropy” ha sido utilizado para mejorar el comportamiento de algunos de los controladores borrosos. Todos los controladores difusos presentados en ésta Tesis han sido implementados utilizando un código desarrollado por el candidato para tal efecto, llamado MOFS (Miguel Olivares’ Fuzzy Software). Diferentes algoritmos visuales han sido utilizados para adquirir la informaci´on visual del entorno, “Cmashift”, descomposición de la homografía y detección de marcas de realidad aumentada, entre otros. Dicha información visual ha sido utilizada como entrada de los controladores difusos para comandar los vehículos en las diferentes applicaciones autonomas. El volante de un vehículo comercial ha sido controlado para realizar pruebas de conducción autónoma en condiciones de tráfico similares a las de una ciudad. El sistema ha llegado a completar con éxito pruebas de más de 6 km sin ninguna interacción humana, mediante el seguimiento de una línea pintada en el suelo. El limitado campo visual del sistema no ha sido impedimento para alcanzar velocidades de hasta 48 km/h y ser guiado autonomamente en curvas de radio reducido. Objetos estáticos y móviles han sido seguidos desde un helicoptero no tripulado, mediante el control de una plataforma visual “pan-and-tilt”. ´Éste mismo helicoptero ha sido controlado completamente para su aterrizaje autonomo, mediante el control del movimiento lateral (roll), horizontal (pitch) y de altitud. El seguimiento de objetos volantes ha sido resulto mediante el control horizontal (pitch) y de orientación (heading) de un quadrirotor. Para tareas de evitación de obstáculos se ha implementado un controlador difuso para el manejo de la orientación (heading) de un quadrirotor. En el campo de la optimización de controladores se ha aportado al estado del arte una extensión del uso del método “Cross-Entropy”. Está Tesis presenta una novedosa implementación de dicho método para la optimización de las ganancias, la posición y medida de los conjuntos de las funciones de pertenecia y el peso de las reglas para mejorar el comportamiento de un controlador difuso. Dichos procesos de optimización se han realizado utilizando “ROS” y “Matlab Simulink” para obtener mejores resultados para la evitación de colisiones con vehículos aéreos no tripulados. Ésta Tesis demuestra que los controladores implementados con lógica difusa son altamente capaces de controlador sistemas sin tener en cuenta el modelo del vehículo a controlador en entornos altamente perturbables con un sensor de bajo coste como es una cámara. El ruido presentes causado por los cambios de iluminación en la adquisición de imágenes y la alta incertidumbre en la detección visual han sido manejados satisfactoriamente por ésta técnica de de “Soft-Computing” para distintas aplicaciones tanto con vehículos aéreos como terrestres.
Resumo:
E-learning systems output a huge quantity of data on a learning process. However, it takes a lot of specialist human resources to manually process these data and generate an assessment report. Additionally, for formative assessment, the report should state the attainment level of the learning goals defined by the instructor. This paper describes the use of the granular linguistic model of a phenomenon (GLMP) to model the assessment of the learning process and implement the automated generation of an assessment report. GLMP is based on fuzzy logic and the computational theory of perceptions. This technique is useful for implementing complex assessment criteria using inference systems based on linguistic rules. Apart from the grade, the model also generates a detailed natural language progress report on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. This is illustrated by applying the model to the assessment of Dijkstra’s algorithm learning using a visual simulation-based graph algorithm learning environment, called GRAPHs