976 resultados para experimental physical chemistry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 angstrom resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis, for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting beta-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between giant bacteriophage DNA and cationic biomimetic particles was characterized from sizing by dynamic light-scattering, zeta-potential analysis, turbidimetry, determination of colloid stability, visualization from atomic force microscopy (AFM), and determination of cytotoxicity against E. coli from colony forming unities counting. First, polystyrene sulfate (PSS) particles with different sizes were covered by a dioctadecyldimethylammonium bromide (DODAB) bilayer yielding the so-called cationic biomimetic particles (PSS/DODAB). These cationic particles are highly organized, present a narrow size distribution and were obtained over a range of particle sizes. Thereafter, upon adding lambda, T5 or T2-DNA to PSS/DODAB particles, supramolecular assemblies PSS/DODAB/DNA were obtained and characterized over a range of DNA concentrations and particle sizes (80-700 nm). Over the low DNA concentration range, PSS/DODAB/DNA assemblies were cationic, colloidally stable with moderate polydispersity and highly cytotoxic against E. coli. From DNA concentration corresponding to charge neutralization, neutral or anionic supramolecular assemblies PSS/DODAB/DNA exhibited low colloid stability, high polydispersity and moderate cytotoxicity. Some nucleosome mimetic assemblies were observed by AFM at charge neutralization (zeta-potential equal to zero).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the size, shape, structure, and interactions of lysozyme in the ternary system lysozyme/DMSO/water at low protein concentrations. Three structural regimes have been identified, which we term the ""folded"" (0 < phi(DMSO) < 0.7), ""unfolded"" (0.7 <= phi(DMSO) < 0.9), and ""partially collapsed"" (0.9 <= phi(DMSO) < 1.0) regime. Lysozyme resides in a folded conformation with an average radius of gyration of 1.3 +/- 0.1 nm for phi(DMSO) < 0.7 and unfolds (average R(g) of 2.4 +/- 0.1 nm) above phi(DMSO) > 0.7. This drastic change in the protein`s size coincides with a loss of the characteristic tertiary structure. It is preceded by a compaction of the local environment of the tryptophan residues and accompanied by a large increase in the protein`s overall flexibility. In terms of secondary structure, there is a gradual loss of alpha-helix and concomitant increase of beta-sheet structural elements toward phi(DMSO) = 0.7, while an increase in phi(DMSO) at even higher DMSO volume fractions reduces the presence of both a-helix and beta-sheet secondary structural elements. Protein-protein interactions remain overall repulsive for all values of phi(DMSO) An attempt is made to relate these structural changes to the three most important physical mechanisms that underlie them: the DMSO/water microstructure is strongly dependent on the DMSO volume fraction, DMSO acts as a strong H-bond acceptor, and DMSO is a bad solvent for the protein backbone and a number of relatively polar side groups, but a good solvent for relatively apolar side groups, such as tryptophan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-level CASSCF/MRCI calculations with a quintuple-zeta quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Pi state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterogeneous dynamics within a time range of nanoseconds was investigated by molecular dynamics (MD) simulations of 1 -butyl-3-methylimidazolium chloride ([bmim]Cl). After identifying groups of fast and slow ions, it was shown that the separation between the location of the center of mass and the center of charge of cations, d(CMCC), is a signature of such difference in ionic mobility. The distance d(CMCC) can be used as a signature because it relaxes in the time window of the dynamical heterogeneity. The relationship between the parameter dcmcc and conformations of the side alkyl chain in [bmim] is discussed. Since the relatively slow relaxation of dcmcc is a consequence of coexisting polar and nonpolar domains in the bulk, the MD simulations reveal a subtle interplay between structural and dynamical heterogeneity in ionic liquids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three water-insoluble, micelle-anchored flavylium salts, 7-hydroxy-3-octyl-flavylium chloride, 4`-hexyl-7-hydroxyflavylium chloride, and 6-hexyl-7-hydroxy-4-methyl-flavylium chloride, have been employed to probe excited-state prototropic reactions in micellar sodium dodecyl sulfate (SDS). In SDS micelles, the fluorescence decays of these three flavylium salts are tetraexponential functions in the pH range from 1.0 to 4.6 at temperatures from 293 to 318 K. The four components of the decays are assigned to Four kinetically coupled excited species in the micelle: specifically, promptly deprotonable (AH(+)*) and nonpromptly deprotonable (AH(h)(+)*) orientations of the acid in the micelle. the base-proton geminate pair (A*center dot center dot center dot H(+)), and the free conjugate base (A*). The initial prompt deprotonation to form the germinate pair occurs at essentially the same rate (k(d) similar to 6-7 x 10(10) s(-1)) for all three photoacids. Recombination of the germinate pair is similar to 3-fold faster than the rate of proton escape from the pair (k(rec) similar to 3 x 10(10) s(-1) and k(diss) similar to 1 x 10(10) s(-1)), corresponding to an intrinsic recombination efficiency of the pair of similar to 75%. Finally, the reprotonation of the short-lived free A* (200-350 ps, depending oil the photoacid) has two components, only one of which depends oil the proton concentration in the intermicellar aqueous phase. Ultrafast transfer of the proton to water and substantial compartmentalization of the photogenerated proton at the micelle surface Oil the picosecond time scale strongly suggest preferential transfer of the proton to preformed hydrogen-bonded water bridges between the photoacid and the anionic headgroups. This localizes the proton in the vicinity of the excited base much more efficiently than ill bulk water, resulting ill the predominance of geminate re reprotonation at the micelle surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferrites of the type M(II)Fe(2)O(4) (M = Fe and Co) have been prepared by the traditional coprecipitation method. These ferrites were modified by the adsorption of fatty acids derived from soybean and castor oil and were then dispersed in cyclohexane, providing very stable magnetic fluids, readily usable in nonpolar media. The structural properties of the ferrites and modified ferrites as well as the magnetic fluids were characterized by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), DRIFTS (diffusion reflectance infrared Fourier transform spectroscopy), FTMR (Fourier transform near-infrared), UV-vis, normal Raman spectroscopy, and surface-enhanced Raman scattering (SERS). XRD and TEM analysis have shown that the magnetic nanoparticles (nonmodified and modified) present diameters in the range of 10-15 nm. DRIFTS measurements have shown that the carboxylate groups of soybean and castor oil fatty acids adsorb on the ferrite surface, forming three different structures: a bridging bidentate, a bridging monodentate, and a bidentate chelate structure. The FTIR and Raman spectra of nonmodified Fe(3)O(4) and CoFe(2)O(4) nanoparticles have shown that the number of observed phonons is not compatible with the expected O(h)(7) symmetry, since IR-only active phonons were observed. in the Raman spectra and vice versa. SERS measurements of a CoFe(2)O(4) thin film on a SERS-active gold electrode at different applied potentials made possible the assignment of the signals near 550 and 630 cm(-1) to Co-O motions and the signals near 470 and 680 cm(-1) to Fe-O motions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a simple and efficient strategy to fabricate enzymatic devices based on the deposition of glucose oxidase on aligned and highly oriented CoNiMo metallic nanowires. CoNiMo nanowires with an average diameter of 200 nm and length of 50 mu m were electrodeposited on Au-covered alumina substrates via electrodeposition, using alumina membranes as templates. Enzyme-modified electrodes were fabricated via enzyme immobilization using a cross-linker. To minimize nonspecific reactions in the presence of interfering agents, a permselective membrane composed of poly(vinylsulfonic acid) and polyamidoamine dendrimer was deposited via electrostatic interaction. The formation of hydrogen peroxide as a product of the enzymatic reaction was monitored at low overpotential, 0.0 V (vs Ag/AgCl). The detection limit was estimated at 22 mu M under an applied potential of 0.0 V. The apparent Michaelis-Menten constant determined from the Lineweaver-Burke plot was 2 mM.