982 resultados para evolutionary conservation
Resumo:
银杉(Cathaya argyrophylla)是中国特有的濒危裸子植物,孤立分布于我国亚热带山地。虽然以往等位酶和RAPD标记的研究表明,银杉群体的遗传多样性水平很低而群体间的遗传分化很高,但迄今对该种群体的动态变化以及物种的进化历史仍缺乏了解,包括影响群体遗传结构的因素以及物种可能的避难所等,对如何有效地保护和恢复银杉群体仍缺乏科学依据。本文根据8个核基因片段和2个线粒体片段的序列数据,运用群体遗传学和谱系地理学方法,探讨了银杉在DNA水平上的多样性和群体的动态历史,探讨了影响银杉特殊的群体遗传结构的各种因素,并推测了银杉第四纪冰期的避难所,对银杉花粉活力及其变异进行检测。在此基础上,提出了保护和恢复银杉群体的具体策略和措施。主要研究结果如下: 1. 核甘酸多态性和群体遗传结构 从101个核基因片段中筛选了8个适用于银杉的片段,对来自四个地区15个群体共86个个体的胚乳总DNA进行了扩增和测序。8个核基因座位的平均核苷酸多态性(θs=0.0022,πs=0.0027)显著低于其它松杉植物遗传多态性的多座位估计值。四个地区中,大瑶山(DY)的多态性最高(θs=0.0026,πs=0.0027),八面山(BM)最低(θs=0.0014,πs=0.0018),大娄山(DL)和越城岭(YC)介于二者之间。大多数座位内的多态位点间紧密连锁,座位间的连锁只在八面山地区检测到。AMOVA分析表明显著性的多态性比例存在于地区间(20.05%)和地区内群体间(9.37%)。FST分析也显示群体间(FST=0.294)和地区间(FST =0.131-0.319)存在显著的遗传分化。推测伴随着瓶颈效应而出现的遗传漂变及其有限的基因流(Nm=1.2)是导致银杉群体低水平多态性和群体间强烈分化的主要原因。 2.谱系地理学分析 利用2个线粒体片段(nad1和nad4)序列以及高变异量的核2009片段序列对银杉的谱系地理进行了探讨。2个线粒体片段的多态位点组合成3种单倍型,将银杉分成大娄山(DL)、八面山(BM)以及越城岭(YC)和大瑶山(DY)3个地区,地区间的单倍型完全不同(GST=1.0),结合核基因呈现的群体遗传结构,推测现存银杉群体至少来源于4个冰期避难所,相当于银杉现存的4个相互隔离的地区。2009座位上12个变异位点组合成8种单倍型,位于单倍型谱系内部节点的4种祖先单倍型分布广泛、出现频率最高,其它7个核基因座位具有类似谱系结构。遗传距离和地理距离没有相关性,NST (0.138)与GST (0.134)没有显著性差异,说明现存的银杉群体是相对较近的时间内片断化的产物。2009片段分离位点的失配分布(mismatch distribution)呈双峰和多峰,表明银杉群体没有经历近期的扩张,与古生物学研究证据相吻合。 3. 银杉的基因杂合性和花粉生命力 利用2009和cad两个核基因片段,采用多胚乳序列法得到总的杂合体比率为64%(2009)和60%(cad),说明银杉群体中存在高比例的杂合体。大娄山地区的杂合体比率是八面山地区的2倍。银杉杂合体比率的高低可能与其遗传多态性有关,也可能是自然选择的结果。采用TTC染色法对银杉的花粉生命力进行了测定,在干燥低温条件下银杉花粉的活力很稳定,保存一年后有活力的花粉数仍高达80%以上。通过对来自两个地区(DY和YC)7个群体共16个银杉个体花粉活力的测定发现,银杉有活力花粉比例高达93.3%,与其它裸子植物相当。花粉活力在地区间和群体间存在显著差异,花坪地区(95.2%)的花粉活力高于大瑶山(91.3%)。花粉活力在群体内个体间差异不显著。 4.银杉的进化历史及其保护 银杉的低水平的遗传多样性和独特的群体遗传结构对我们推测其冰川期避难所提供了重要依据。本研究在银杉4个孤立分布区发现了彼此不重叠的线粒体单倍型,同时核基因表现出了4个地理群,说明随着第四纪冰期气候的波动和银杉分布范围的片段化,原来广布的群体逐步萎缩,最后被保留在位于西部大娄山(DL),东部八面山(BM),中南部越城岭(YC)和南部大瑶山(DY) 4个相互隔离的避难所。银杉独特的群体结构和动态历史对进一步制定相应的保护措施具有重要参考价值。由于遗传多态性很低,群体又小,几乎所有现存的银杉群体都面临由于随机事件导致的物种灭绝。更严重的是,当前该物种的适生环境不断恶化和片段化,以及异常低的生殖和存活率导致银杉与其它物种竞争能力很低。因此,除目前采取的原地保护策略外,迁地保护应给予优先考虑。此外,采用传统的控制授粉策略(在遗传上有显著差异的群体间开展人工杂交)是丰富其遗传多态性、恢复衰退群体的可行措施之一。
Resumo:
Ecosystem-based management is one of many indispensable components of objective, holistic management of human impacts on nonhuman systems. By itself, however, ecosystem-based management carries the same risks we face with other forms of current management; holism requires more. Combining single-species and ecosystem approaches represents progress. However, it is now recognized that management also needs to be evosystem-based. In other words, management needs to account for all coevolutionary and evolutionary interactions among all species; otherwise we fall far short of holism. Fully holistic practices are quite distinct from the approaches to the management of fisheries that are applied today. In this paper, we show how macroecological patterns can guide management consistently, objectively, and holistically. We present one particular macroecological pattern with two applications. The first application is a case study of fisheries from the Baltic Sea involving historical data for two species; the second involves a sample of 44 species of primarily marine fish worldwide. In both cases we evaluate historical fishing rates and determine holistic/systemic sustainable single-species fishing rates to illustrate that conventional fisheries management leads to much more extensive and pervasive overfishing than currently realized; harvests are, on average, over twenty-fold too large to be fully sustainable. In general, our approach involves not only the sustainability of fisheries and related resources but also the sustainability of the ecosystems and evosystems in which they occur. Using macroecological patterns accomplishes four important goals: 1) Macroecology becomes one of the interdisciplinary components of management. 2) Sustainability becomes an option for harvests from populations of individual species, species groups, ecosystems, and the entire marine environment. 3) Policies and goals are reality-based, holistic, or fully systemic; they account for ecological as well as evolutionary factors and dynamics (including management itself). 4) Numerous management questions can be addressed.
Resumo:
Seagrass ecosystems are protected under the federal "no-net-loss" policy for wetlands and form one of the most productive plant communities on the planet, performing important ecological functions. Seagrass beds have been recognized as a valuable resource critical to the health and function of coastal waters. Greater awareness and public education, however, is essential for conservation of this resource. Tremendous losses of this habitat have occurred as a result of development within the coastal zone. Disturbances usually kill seagrasses rapidly, and recovery is often comparatively slow. Mitigation to compensate for destruction of existing habitat usually follows when the agent of loss and responsible party are known. Compensation assumes that ecosystems can be made to order and, in essence, trades existing functional habitat for the promise of replacement habitat. While ~lant ingse agrass is not technically complex, there is no easy way to meet the goal of maintaining or increasing seagrass acreage. Rather, the entire process of planning, planting and monitoring requires attention to detail and does not lend itself to oversimplification.
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region.