922 resultados para endothelial leukocyte adhesion molecule 1


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings. We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E-RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(-) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(-) cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions. By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epac1 and Epac2 bind cAMP and mediate cAMP-dependent activation of Rap1. cAMP is produced in neutrophils in response to many chemoattractants. This second messenger plays a key role in the regulation of the functions of neutrophils. However, it is still not known whether Epacs are expressed in human neutrophils. We found that stimulation of PLB-985 cells differentiated into neutrophil-like cells, human neutrophils with 8CPT-2Me-cAMP (a selective activator of Epacs), or FK (a diterpene that augments the intracellular level of cAMP) led to GTP-loading of Rap1. Epac1 mRNA was expressed in UND and DF PLB-985 cells, but Epac1 protein was only detected in DF PLB-985 cells. In human neutrophils, the Epac1 transcript was present, and Epac1 protein could be detected by Western blot analysis if the cells had been treated with the serine protease inhibitor PMSF. FK induced adhesion of PLB-985 cells and human neutrophils on fibrinogen, a ligand for beta 2 integrins. Interestingly, in DF PLB-985 cells, but not in human neutrophils, 8CPT-2Me-cAMP induced beta 2 integrin-dependent adhesion. The failure of 8CPT-2Me-cAMP to induce beta 2 integrin-dependent human neutrophil adhesion could be explained by the fact that this compound did not induce a switch of the beta 2 integrins from a low-affinity to a high-affinity ligand-binding conformation. We concluded that Epac1 is expressed in human neutrophils and is involved in cAMP-dependent regulation of Rap1. However, the loading of GTP on Rap1 per se is not sufficient to promote activation of beta 2 integrins. J. Leukoc. Biol. 90: 741-749; 2011.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M-1). An M-1 functional, cell-based, calcium-mobilization assay identified three distinct chemical series with initial selectivity for M-1 versus M-4. An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC50 = 130 nM) and selective (>75-fold vs. M-2-M-5 and >10 mu M vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M-1 antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/MLPCN probe molecule for studying and dissecting M-1 function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embryonic stem cells possess the ability to differentiate into endothelium. The ability to produce large volumes of endothelium from embryonic stem cells could provide a potential therapeutic modality for vascular injury. We describe an approach that selects endothelial cells using magnetic beads that may be used therapeutically to treat arterial injury.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Inflammation and endothelial dysfunction have been associated with the immunobiology of preeclampsia (PE), a significant cause of adverse pregnancy outcomes. The prevalence of PE is elevated several fold in the presence of maternal type 1 diabetes mellitus (T1DM). Although cross-sectional studies of pregnancies among women without diabetes have shown altered inflammatory markers in the presence of PE, longitudinal studies of diabetic women are lacking. In maternal serum samples, we examined the temporal associations of markers of inflammation with the subsequent development of PE in women with T1DM. RESEARCH DESIGN AND METHODS We conducted longitudinal analyses of serum C-reactive protein (CRP), adhesion molecules, and cytokines during the first (mean ± SD, 12.2 ± 1.9 weeks), second (21.6 ± 1.5 weeks), and third (31.5 ± 1.7 weeks) trimesters of pregnancy (visits 1-3, respectively). All study visits took place before the onset of PE. Covariates were BMI, HbA1c, age of onset, duration of diabetes, and mean arterial pressure. RESULTS In women with T1DM who developed PE versus those who remained normotensive, CRP tended to be higher at visits 1 (P = 0.07) and 2 (P = 0.06) and was significantly higher at visit 3 (P <0.05); soluble E-selectin and interferon-?-inducible protein-10 (IP-10) were significantly higher at visit 3; interleukin-1 receptor antagonist (IL-1ra) and eotaxin were higher and lower, respectively, at visit 2 (all P <0.05). These conclusions persisted following adjustment for covariates. CONCLUSIONS In pregnant women with T1DM, elevated CRP, soluble E-selectin, IL-1ra, and IP-10 and lower eotaxin were associated with subsequent PE. The role of inflammatory factors as markers and potential mechanisms of the high prevalence of PE in T1DM merits further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diabetes may induce both quantitative and qualitative changes in lipoproteins, especially low-density lipoprotein (LDL). Effects of LDL glycation on endothelial cell secretion of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) have not been fully elucidated. Human aortic endothelial cell (HAEC) tPA and PAI-1 production were determined after incubation with LDL (50 to 500 microg/mL protein, 24 h) from three sources: (1) nondiabetic LDL (N-LDL) modified in vitro to form six preparations: native, nonmodified (N); glycated (G); minimally oxidized (MO); minimally oxidized and glycated (MOG); heavily oxidized (HO); and heavily oxidized and glycated (HOG); (2) in vivo glycated and relatively nonglycated LDL subfractions from type 1 diabetic patients; (3) LDL from type 1 diabetic patients and matched controls, which was subfractionated using density gradient ultracentrifugation. In experiments using LDL modified in vitro, the rate of tPA release by HAECs incubated with N-LDL (83 +/- 4 ng/mg cell protein/24 h) did not differ significantly from those incubated with G-LDL (73 +/- 7), MO-LDL (74 +/- 13), or MOG-LDL (66 +/- 15) and was not influenced by LDL concentration. The rate of PAI-1 release was similar in HAECs incubated with N-LDL (5.7 +/- 0.6 mug/mg cell protein/24 h), G-LDL (5.7 +/- 0.7), MO-LDL (5.5 +/- 0.8), or MOG-LDL (5.7 +/- 0.9) and was not influenced by LDL concentration. In contrast, tPA release was significantly decreased in cells incubated with LDL (10 microg/mL) modified extensively by oxidation, and averaged 45.2 +/- 5.0 and 43.7 +/- 9.9 ng/mg/24 h for HO-LDL and HOG-LDL, respectively, and was further decreased with increasing concentrations of the heavily oxidized LDL preparations. PAI-1 release was not significantly decreased relative to N-LDL in cells incubated with low concentrations (5 to 50 microg/mL) of HO-LDL and HOG-LDL, but was decreased to 3.2 +/- 0.5 and 3.1 +/- 0.7 microg/mg/24 h for HO-LDL and HOG-LDL at 200 microg/mL, respectively. Results using in vivo glycated versus nonglycated LDL showed that tPA and PAI-1 release did not differ between subfractions. Release of tPA averaged 5.11 +/- 0.6 and 5.12 +/- 0.7 ng/mg/24 h, whereas release of PAI-1 averaged 666 +/- 27 ng/mg/24 h and 705 +/- 30 ng/mg/24 h for nonglycated and glycated LDL subfractions, respectively. Using LDL of different density subclasses, tPA and PAI-1 release in response to LDL from diabetic patients compared with control subjects did not differ when HAECs were incubated with LDLs of increasing density isolated from each subject pair. We conclude that oxidation of LDL, but not glycation, may contribute to the altered fibrinolysis observed in diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well-known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a vascular endothelial growth factor receptor (VEGFR) and PI3K/Akt dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Over-expression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 Protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3 and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis.
Background: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction.
Methods: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis.
Results: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers.
Conclusions: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This pilot study was aimed to establish techniques for assessing and observing trends in endothelial function, antioxidant status and vascular compliance in newly diagnosed HFE haemochromatosis during the first year of venesection.

Patients/methods: Untreated newly diagnosed HFE haemochromatosis patients were tested for baseline liver function, iron indices, lipid profile, markers of endothelial function, anti-oxidant status and vascular compliance. Following baseline assessment, subjects attended at 6-weeks and at 3, 6, 9 and 12-months for follow-up studies.

Results: Ten patients were recruited (M = 8, F = 2, mean age = 51 years). Venesection significantly increased high density lipoproteins at 12-months (1.25 mmol/L vs. 1.37 mmol/L, p = 0.01). However, venesection did not significantly affect lipid hydroperoxides, intracellular and vascular cell adhesion molecules or high sensitivity C-reactive protein (0.57 mu mol/L vs. 0.51 mu mol/L, p = 0.45, 427.4 ng/ml vs. 307.22 ng/ml, p = 0.54, 517.70 ng/ml vs. 377.50 ng/ml, p = 0.51 and 290.75 mu g/dL vs. 224.26 mu g/dL, p = 0.25). There was also no significant effect of venesection on anti-oxidant status or pulse wave velocity (9.65 m/s vs. 8.74 m/s, p = 0.34).

Conclusions: Venesection significantly reduced high density lipoproteins but was not associated with significant changes in endothelial function, anti-oxidant status or vascular compliance. Larger studies using this established methodology are required to clarify this relationship further.