1000 resultados para enamel matrix derivate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermo-optical waveguide switch matrix is designed and fabricated on silicon-on-insulator wafer. Multi-mode interferometers are used as power splitters and combiners in a Mach-Zehnder structure. Inductively coupled plasma reactive ion etching is used to fabricate the waveguides. The rise and fall times of the switch matrix are 13 mu s and 7 mu s, respectively. Switch cells have an average switching power consumption of 340 mW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 x 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 x 2 switch showed very low power consumption of 140 mW and a very high speed of 8 +/- 1 mus. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 +/- 0.3 dB at 1.55 mum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the concept of the Loschmidt echo (LE) to the space of the reduced density matrix of spin and fermionic systems to study the density matrix LEs (DMLEs) of the one-dimensional extended Hubbard model and the transverse field Ising model. Our results show that the DMLEs are remarkably influenced by the criticality of the system, and the method is a convenient way to study quantum phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report the self-organized growth of InAs/InAlAs quantum wires on nominal (001) InP substrate and (001) InP substrates misoriented by 2 degrees, 4 degrees, and 8 degrees towards both [-110] and [110]. The influence of substrate misorientation on the structural and optical properties of these InAs/InAlAs quantum wires is studied by transmission electron microscopy and photoluminescence measurements. Compared with that grown on nominal (001) InP substrate, the density of InAs/InAlAs quantum wires grown on misoriented InP(001) substrates is enhanced. A strong lateral composition modulation effect take place in the InAlAs buffer layers grown on misoriented InP substrates with large off-cut angles (4 degrees and 8 degrees), which induces a nucleation template for the first-period InAs quantum wires and greatly improve the size distribution of InAs quantum wires. InAs/InAlAs quantum wires grown on InP (001) substrate 8 degrees off cut towards [-110] show the best size homogeneity and photoluminescence intensity. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4 X 4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10 dB, and the response time is 950 us. (c) 2007 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel folding 8 x 8 matrix switches based on silicon on insulator were demonstrated. In the design, single-mode rib waveguides and multimode interferences are connected by optimized tapered waveguides to reduce the mode coupling loss between the two types of waveguides. The self-aligned method was applied to the key integrated turning mirrors for perfect positions and low loss of them. A mixed etching process including inductively coupled plasma and chemical etching was employed to etch waveguides and mirrors, respectively. The compact size of the device is only 20 x 3.2 mm(2). The switch element with high switching speed and low power consumption is presented in the matrix. The average insertion loss of the matrix is about -21 dB, and the excess loss of one mirror is measured of -1.4 dB. The worst crosstalk is larger than 21 dB. Experimental results illuminate that some of the main characteristics of optical matrix switches are. developed in the modified design, which is in accord with theoretic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 16 x 16 thermo-optic wavelenght switch matrix has been designed and febricated on silicon-on-insulator wafer. For reducing device lenght, blocking switch matrix configuration is chosen. The building block of a matix is a 2 x 2 cell with Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitters/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220 mW. The switching time of a switch cell is less than 3 mu s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy ( MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGAs/GgAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when, the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the applicability of the density matrix renormalization group (DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for the purpose of its correlation effect. By applying the DMRG approach to the t+U+V model, with t and V being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and U the on-site Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n(1)=3, n(2)=2), which reflects the competition between the correlation energy U and V. Within reasonable parameter ranges, we investigate possible correlated ground states, the lowest excitations, and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.