956 resultados para eletro-optical measurements
Resumo:
Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng/m**3) compared to the AE10 results (1.6 ± 2.1 ng/m**3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of w550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.
Resumo:
Whether intrinsic molecular properties or extrinsic factors such as environmental conditions control the decomposition of natural organic matter across soil, marine and freshwater systems has been subject to debate. Comprehensive evaluations of the controls that molecular structure exerts on organic matter's persistence in the environment have been precluded by organic matter's extreme complexity. Here we examine dissolved organic matter from 109 Swedish lakes using ultrahigh-resolution mass spectrometry and optical spectroscopy to investigate the constraints on its persistence in the environment. We find that degradation processes preferentially remove oxidized, aromatic compounds, whereas reduced, aliphatic and N-containing compounds are either resistant to degradation or tightly cycled and thus persist in aquatic systems. The patterns we observe for individual molecules are consistent with our measurements of emergent bulk characteristics of organic matter at wide geographic and temporal scales, as reflected by optical properties. We conclude that intrinsic molecular properties are an important control of overall organic matter reactivity.