911 resultados para electron backscatter diffraction imaging
Resumo:
Ni-doped SnO(2) nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO(2) nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper presents the results obtained with the production of briquettes from the steel grit found in the residue of ornamental rocks. The grit recovered by magnetic separation was characterized by titrimetric analysis, EDS (Electron Dispersive Spectroscopy) and X-ray diffraction for the analysis of iron concentration in the residue. The size and distribution of particles were obtained by the granulometric analysis method and scanning electron microscopy (SEM). The process resulted in a concentrate containing 93% metallic iron. The maximum load before fracture of the green briquettes was 1.02kN and of the dry briquettes was 3.59kN.
Resumo:
TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {111}, {200} {220} and {311} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
A polymer precursor method has been used to synthesize Ni-doped SnO(2) nanoparticles. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. In this concentration range, the particle sizes decrease with increasing Ni content and a bulk solid solution limit was determined at similar to 1 mol%. Ni surface enrichment is present at concentrations higher than the solution limit. Only above 10 mol% Ni. the formation of a second NiO-related phase has been determined. Magnetization measurements suggest the occurrence of ferromagnetism for samples in the solid solution regime (below similar to 1 mol%). This ferromagnetism is associated with the exchange interaction between electron spins trapped on oxygen vacancies, and is enhanced as the amount of Ni(2+) substituting at Sn(4+) sites increases. Above the solid solution limit, ferromagnetism is destroyed by the Ni surface enrichment and the system behaves as a paramagnet. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The distribution of Cr and N in a high-temperature gas-nitrided stainless steel was measured by using a scanning electron microscope-coupled wavelength-dispersive X-ray spectrometer and the results were related to the microhardness profile of the hardened case. The experimental spectrometric procedure was optimized to consistently measure N contents varying between 0.1 and 0.8 wt.% in martensite and between 18.3 and 21.6 wt.% in nitrides, as well as Cr contents ranging from 11.5 to 17.0 wt.%. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Polymer-clay nanocomposites are materials with many interesting structures, properties, and potential applications. Microstructural evaluation of a nanocomposite is not an easy task, as clay may form hierarchical structures which may look different when observed at various magnifications under a microscope, and also as the concepts of ""intercalation"" and ""exfoliation"" are not self-sufficient to describe its morphology. In this work polymer-clay nanocomposites of polystyrene and two styrene-containing block copolymers (styrene-butadiene-styrene and styrene-ethylene/butylene-styrene) were prepared using three different techniques. Clay dispersion was evaluated by a recently developed microscopy image analysis procedure, combining the analysis of optical and transmission electron micrographs, and the characterization was complemented by X-ray diffraction and rheological measurements. The results showed better clay dispersion for both block copolymers nanocomposites, mainly due to their molecular architectures. Moreover, the techniques which showed the best results involved mixing the materials in a solvent medium. POLYM. ENG. SCI., 50:257-267, 2010. (C) 2009 Society of Plastics Engineers
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Ti-Fe system has been calculated using a truncated cluster expansion, through the combination of FP-LAPW and cluster variation method (CVM) in the irregular tetrahedron cluster approximation. The results are compared with phenomenological CVM assessments of the system and suggest that the value for the experimental formation enthalpy of the B2-TiFe compound should be significantly more negative than the currently assessed value. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene-butadiene-styrene copolymer and four styrene-ethylene/butylenes-styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing-solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G`) curves was studied by the evaluation of the changes in the low frequency slope of log G` x log omega (omega: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G` slope variations was observed.
Resumo:
The phenylethanoid glycoside acteoside and the iridoids ipolamiide and 4-methoxycarbonyl-7-methylcyclopenta[c]pyran (fulvoipolamiide) were isolated from the leaves of Stachytarpheta glabra. The solid state structure of fulvoipolamiide was confirmed by X-ray diffraction studies. The molecules of fulvoipolamiide are displayed in layers parallel to the crystallographic axis a. This molecule is planar with electron delocalization in the fused ring system and the pyran rings of adjacent layers in the solid state structure are involved in a pi-pi stacking interaction. Raman spectroscopy has also been used to characterize the most important bands present in the spectra of fulvoipolamiide and ipolamiide, and comparison made with literature allows the assignment of some key markers, specially the bands in the 1600-1700 cm(-1) range. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.
Resumo:
In this work, the structure and morphology of silicon oxynitride films deposited by the PECVD technique were studied. The films were deposited under two different conditions: (a) SiOxNy with chemical compositions varying from SiO2 to Si3N4 via the control of a N2O + N-2 + SiH4 gas mixture, and (b) Si-rich SiOxNy films via the control of a N2O + SiH4 gas mixture. The analyses were performed using X-ray near edge spectroscopy (XANES) at the Si-K edge, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). For samples with chemical composition varying from SiO2 to Si3N4, the diffraction patterns obtained by TEM exhibited changes with the chemical composition, in agreement with the XANES results. For silicon-rich silicon oxynitride samples, the formation of a-Si clusters was observed and the possibility of obtaining Si nanocrystals after annealing depending on the composition and temperature was realized. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.