965 resultados para electric energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objetive of this research is to evaluate the long term relationship between energy consumption and GDP for some Latin American countries in the period 1980-2009 -- The estimation has been done through the non-stationary panel approach, using the production function in order to control other sources of GDP variation, such as capital and labor -- In addition to this, a panel unit root tests are used in order to identify the non-stationarity of these variables, followed by the application of panel cointegration test proposed by Pedroni (2004) to avoid a spurious regression (Entorf, 1997; Kao, 1999)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a system for visually analyzing the electromagnetic fields of the electrical machines in the energy conversion laboratory. The system basically utilizes the finite element method to achieve a real-time effect in the analysis of electrical machines during hands-on experimentation. The system developed is a tool to support the student's understanding of the electromagnetic field by calculating performance measures and operational concepts pertaining to the practical study of electrical machines. Energy conversion courses are fundamental in electrical engineering. The laboratory is conducted oriented to facilitate the practical application of the theory presented in class, enabling the student to use electromagnetic field solutions obtained numerically to calculate performance measures and operating characteristics. Laboratory experiments are utilized to help the students understand the electromagnetic concepts by the use of this visual and interactive analysis system. In this system, this understanding is accomplished while hands-on experimentation takes place in real-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroelectric systems are well-known for large scale power generation. However, there are virtually no studies on energy harvesting with these systems to produce tens or hundreds of milliwatts. The goal of this work was to study which design parameters from large-scale systems can be applied to small-scale systems. Two types of hydro turbines were evaluated. The first one was a Pelton turbine which is suitable for high heads and low flow rates. The second one was a propeller turbine used for low heads and high flow rates. Several turbine geometries and nozzle diameters were tested for the Pelton system. For the propeller, a three-bladed turbine was tested for different heads and draft tubes. The mechanical power provided by these turbines was measured to evaluate the range of efficiencies of these systems. A small three-phase generator was developed for coupling with the turbines in order to evaluate the generated electric power. Selected turbines were used to test battery charging with hydroelectric systems and a comparison between several efficiencies of the systems was made. Keywords

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on tests of photovoltaic systems in order to address two case studies with silicon monocrystalline and silicon polycrystalline panels, respectively. The first case is an identification of the three parameters of the single-diode equivalent circuit for modelling photovoltaic systems with conclusion about the inevitably age degradation. A comparison between experimental observed and computed I-V and V-P characteristics curves is carried out at standard test conditions. The second case is an experimental observation on a photovoltaic system connected to an electric grid in what regards the quality of the energy injected into the grid. A measuring of the harmonic content in the voltage and in the current waveforms at the terminals of the photovoltaic system is carried out in order to conclude about the conformity with the Standard EN 50160 and the IEEE 519-1992, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an integrated model for an offshore wind energy system taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a PMSG and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the THD on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. PI fractional-order control supports the control strategy. A comparison between the drive train models is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is on a wind energy conversion system simulation of a transient analysis due to a blade pitch control malfunction. The aim of the transient analysis is the study of the behavior of a back-to-back multiple point clamped five-level full-power converter implemented in a wind energy conversion system equipped with a permanent magnet synchronous generator. An alternate current link connects the system to the grid. The drive train is modeled by a three-mass model in order to simulate the dynamic effect of the wind on the tower. The control strategy is based on fractional-order control. Unbalance voltages in the DC-link capacitors are lessen due to the control strategy, balancing the capacitor banks voltages by a selection of the output voltage vectors. Simulation studies are carried out to evaluate not only the system behavior, but also the quality of the energy injected into the electric grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of renewable energies as a response to the EU targets defined for 2030 Climate Change and Energy has been increasing. Also non-dispatchable and intermittent renewable energies like wind and solar cannot generally match supply and demand, which can also cause some problems in the grid. So, the increased interest in energy storage has evolved and there is nowadays an urgent need for larger energy storage capacity. Compressed Air Energy Storage (CAES) is a proven technology for storing large quantities of electrical energy in the form of high-pressure air for later use when electricity is needed. It exists since the 1970’s and is one of the few energy storage technologies suitable for long duration (tens of hours) and utility scale (hundreds to thousands of MW) applications. It is also one of the most cost-effective solutions for large to small scale storage applications. Compressed Air Energy Storage can be integrated and bring advantages to different levels of the electric system, from the Generation level, to the Transmission and Distribution levels, so in this paper a revisit of CAES is done in order to better understand what and how it can be used for our modern needs of energy storage.