886 resultados para dye oxidation
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.
Effects of starch gelatinization and oxidation on the rheological behavior of chitosan/starch blends
Resumo:
Chitosan/starchblends represent an interesting alternative for the preparation of biocompatible drug delivery systems, packing materials and edible films. This paper reports on the effects of starch gelatinization and oxidation on the rheological behavior of chitosan/starch blends. The results show that the modifications in the starch structure cause changes in G` (storage modulus) and G `` (lossmodulus) as a function of frequency. For chitosan/starch, G `` is higher than G`, showing a viscous behavior. However, for chitosan/gelatinized starch and chitosan/oxidized starch, an increase in the angular frequency promotes a modulus crossover at omega = 0.02 and 0.04 rad s(-1), respectively. The viscosity curves as a function of shear rate show that both modifications cause an increase in viscosity, and all blends show a non-Newtonian behavior. (C) 2011 Society of Chemical Industry
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Resumo:
This work investigates the solar heterogeneous photocatalytic degradation of three commercial acid dyes: Blue 9 (C.I. 42090), Red 51 (C.I. 45430), and Yellow 23 (C.I. 19140). TiO(2) P25 from Degussa was used as the photocatalyst. The dyes were completely degraded within 120 min of treatment in the following increasing order of removal rate: Blue 9 < Yellow 23 < Red 51. The photocatalytic color removal process was well described by a two-first-order in-series reaction, followed by another first-order reaction. Photolytic experiments showed that this process is quite inefficient and highly selective towards Red 51 only. The dyes` solution was completely decolorized and organic matter removals up to 99% were achieved with photocatalysis. The lack of selectivity and the possibility of using solar light to excite the photocatalyst are promising results regarding the feasibility of this technology.
Resumo:
The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Instead of a time-invariant voltammetric profile, many electrochemical systems display a cycle-dependent current-potential response. This phenomenon has been referred to as complex voltammetric response and it has been observed during the electro-oxidation of several molecules such as methanol, ethanol, propanol and hydrogen. There are currently two explanations for the surface mechanism underlying this behavior. In one scenario, the complex voltammogram would result from the specific kinetic pathway taken during the forward sweep. In the other explanation, the phenomenon is discussed in terms of the interplay among the surface roughening and subsequent relaxation, and the ohmic drop coupled to a negative differential resistance. We report in this paper a nanogravimetric investigation of the complex voltammetric response in the electro-oxidation of methanol on platinum electrode in both acidic and alkaline media. Different periodic patterns composed of intercalated small and large hysteresis cycles were observed as a function of the applied voltage and the series resistance between the working electrode and the potentiostat. Independently, nanogravimetric results indicated no detectable difference in the delta-frequency versus voltage profile between small and large hysteresis cycles. These findings were interpreted as experimental evidence of the secondary, if any, role played by the very electrochemical reaction on the emergence of complex voltammetric response. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Accumulating evidence points to relationships between increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. Chlorpromazine (CPZ), which remains a benchmark treatment for people with schizophrenia, has been described as a pro-oxidant compound. Because the antioxidant compound melatonin exerts protective effects against CPZ-induced liver disease in rats, in this investigation, our main objective was to study the effect of CPZ as a co-catalyst of peroxidase-mediated oxidation of melatonin. We found that melatonin was an excellent reductor agent of preformed CPZ cation radical (CPZ(center dot+)). The addition of CPZ during the horseradish peroxidase (HRP)-catalyzed oxidation of melatonin provoked a significant increase in the rate of oxidation and production of N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK). Similar results were obtained using myeloperoxidase. The effect of CPZ on melatonin oxidation was rather higher at alkaline pH. At pH 9.0, the efficiency of oxidation of melatonin was 15 times higher and the production of AFMK was 30 times higher as compared with the assays in the absence of CPZ. We suggest that CPZ is able to exacerbate the rate of oxidation of melatonin by an electron transfer mechanism where CPZ(center dot+), generated during the peroxidase-catalyzed oxidation, is able to efficiently oxidize melatonin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)