874 resultados para distribution system
Resumo:
Details are given of a programme for fresh fish collection and distribution in Ondo State, Nigeria. Collection centers, organization and managerial structure, collection scheme, trade system, price determination, management and distribution are described
Resumo:
A study was conducted examining the structure of fish marketing in Kwara State and also the conduct of participants within the market structure. The performance of the marketing system was evaluated, highlighting bottlenecks in the system and means of overcoming them
Resumo:
Fish products from the Chad Basin Lake play important role in meeting fish protein needs of Nigeria: they contribute not less than 25% of the total domestic fish supply and are significant in determining the availability of processed products and reduction of post-harvest losses. Processors, marketers and consumers are the major actors in appraising a marketing system. The results show that most sellers (4-7.5%) are within the age range of 30-39 years. Desires for more earnings led the markets to diversify their business activities to food stuff trading (37.5%), dried meat/livestock sales (37.5%), farming (12.5%), and transportation (12.5%). 65% of traders dispose off their products mostly in the mornings and evenings, 70% of the products are sold smoked while 50% of products are sold to individual consumers. Lake Chad fish products have a long distribution chain. There is also a high degree of buyers and sellers concentration in the primary fish markets and secondary (urban) markets. The products have a vertical regional movement with southern traders (82.5%) dominating the business, thus making the products popular all over Nigeria. Product differentiation with imperfect pricing policy is common occurrence. Lake Chad fish marketing system has distortions that impede its efficiency, recommendations are made on how to ensure a better efficiency of the system
Resumo:
An oceanographic software is presented which enables quick access to oceanographic databases. The program is interactive, yields a graphic display for quick-look of data availability and parameter ranges. Additionally, the results of the data retrieval are stored in an ASCII file which can be interfaced with commercial programs like spreadsheet and isoline software. An example is given for the temperature distribution in Greenland waters.
Resumo:
In this paper, the gamma-gamma probability distribution is used to model turbulent channels. The bit error rate (BER) performance of free space optical (FSO) communication systems employing on-off keying (OOK) or subcarrier binary phase-shift keying (BPSK) modulation format is derived. A tip-tilt adaptive optics system is also incorporated with a FSO system using the above modulation formats. The tip-tilt compensation can alleviate effects of atmospheric turbulence and thereby improve the BER performance. The improvement is different for different turbulence strengths and modulation formats. In addition, the BER performance of communication systems employing subcarrier BPSK modulation is much better than that of compatible systems employing OOK modulation with or without tip-tilt compensation.
Resumo:
In order to identify new molecules that might play a role in regional specification of the nervous system, we generated and characterized monoclonal antibodies (mAbs) that have positionally-restricted labeling patterns.
The FORSE-1 mAb was generated using a strategy designed to produce mAbs against neuronal cell surface antigens that might be regulated by regionally-restricted transcription factors in the developing central nervous system (CNS). FORSE-1 staining is enriched in the forebrain as compared to the rest of the CNS until E18. Between E11.5-E13.5, only certain areas of the forebrain are labeled. There is also a dorsoventrally-restricted region of labeling in the hindbrain and spinal cord. The mAb labels a large proteoglycan-like cell-surface antigen (>200 kD). The labeling pattern of FORSE-1 is conserved in various mammals and in chick.
To determine whether the FORSE-1 labeling pattern is similar to that of known transcription factors, the expression of BF-1 and Dlx-2 was compared with FORSE-1. There is a striking overlap between BF-1 and FORSE-1 in the telencephalon. In contrast, FORSE-1 and Dlx-2 have very different patterns of expression in the forebrain, suggesting that regulation by Dlx-2 alone cannot explain the distribution of FORSE-1. They do, however, share some sharp boundaries in the diencephalon. In addition, FORSE-1 identifies some previously unknown boundaries in the developing forebrain. Thus, FORSE-1 is a new cell surface marker that can be used to subdivide the embryonic forebrain into regions smaller than previously described, providing further complexity necessary for developmental patterning.
I also studied the expression of the cell surface protein CD9 in the developing and adult rat nervous system. CD9 is implicated in intercellular signaling and cell adhesion in the hematopoetic system. In the nervous system, CD9 may perform similar functions in early sympathetic ganglia, chromaffin cells, and motor neurons, all of which express the protein. The presence of CD9 on the surfaces of Schwann cells and axons at the appropriate time may allow the protein to participate in the cellular interactions involved in myelination.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.
Resumo:
This research program consisted of three major component areas: (I) development of experimental design, (II) calibration of the trawl design, and (III) development of the foundation for stock assessment analysis. The products which have I. EXPERIMENTAL DESIGN resulted from - the program are indicated below: The study was successful in identifying spatial and temporal distribution characteristics of the several key species, and the relationships between given species catches and environmental and physical factors which are thought to influence species abundance by areas within the mainstem of the Chesapeake Bay and tributaries
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
Reshaping of a Gaussian laser beam into a uniform or other intensity distribution is required for various applications. The laser beam shaping system with a radial birefringent filter is presented in this paper. With such a system the Gaussian beams can be transformed into uniform or annular beams. The theory and simulation of the proposed systems are described in detail. The primary advantage of such a system is that the out beam pro. le can be tunable with the rotation of the radial birefringent element.
Resumo:
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.
Resumo:
This doctoral Thesis defines and develops a new methodology for feeder reconfiguration in distribution networks with Distributed Energy Resources (DER). The proposed methodology is based on metaheuristic Ant Colony Optimization (ACO) algorithms. The methodology is called Item Oriented Ant System (IOAS) and the doctoral Thesis also defines three variations of the original methodology, Item Oriented Ant Colony System (IOACS), Item Oriented Max-min Ant System (IOMMAS) y Item Oriented Max-min Ant Colony System (IOACS). All methodologies pursue a twofold objective, to minimize the power losses and maximize DER penetration in distribution networks. The aim of the variations is to find the algorithm that adapts better to the present optimization problem, solving it most efficiently. The main feature of the methodology lies in the fact that the heuristic information and the exploitation information (pheromone) are attached to the item not to the path. Besides, the doctoral Thesis proposes to use feeder reconfiguration in order to increase the distribution network capacity of accepting a major degree of DER. The proposed methodology and its three variations have been tested and verified in two distribution networks well documented in the existing bibliography. These networks have been modeled and used to test all proposed methodologies for different scenarios with various DER penetration degrees.
Resumo:
In the process of interferometric testing, the measurement result is influenced by the system structure, which reduces the measurement accuracy. To obtain an accurate test result, it is necessary to analyze the test system, and build the relationship between the measurement error and the system parameters. In this paper, the influences of the system elements which include the collimated lens and the standard surface on the interferometric testing are analyzed, the expressions of phase distribution and wavefront error on the detector are obtained, the method to remove some element errors is introduced, and the optimization structure relationships are given. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.