878 resultados para design-based inference
Resumo:
Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.
Resumo:
Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
DNA sequences that are rich in the guanine nucleic base possess the ability to fold into higher order structures called G-quadruplexes. These higher level structures are formed as a result of two sets of four guanine bases hydrogen-bonding together in a planar arrangement called a guanine quartet. Guanine quartets subsequently stack upon each other to form quadruplexes. G-quadruplexes are mainly localized in telomeres as well as in oncogene promoters. One unique and promising therapeutic approach against cancer involves targeting and stabilizing G-quadruplexes with small molecules, generally in order to suppress oncogene expression and telomerase enzyme activity; the latter has been found to contribute to “out-of control” cell growth in ca. 80-85% of all cancer cells and primary tumours while being absent in normal somatic cells. In this work, we present efforts towards designing and synthesizing acridine-based macrocycles (Mh) and (Mb) with the purpose of providing potential G4 ligands that are suited for selective binding to G4 vs. duplex DNA, and stabilize G-quadruplex structures. Two ligands described in this study include an acridine core which provides an aromatic surface capable of π-π interactions with the surface of G-quadruplexes. The successful synthesis of 4,5-diaminoacridine is described in chapter 2, as an essential fragment of the macrocycles (Mh) and (Mb). In order to investigate the synthetic method for macrocyclization, model compounds composing almost half of the designed macrocycles were explored. As discussed in chapter 3, the synthesis of the model compound for (Mb) turned out to be challenging. However, as a step towards the synthesis of (Mh), the synthesis of the hydrogen-containing model compound, which is almost half of the desired macrocycle (Mh) was achieved in our group and proved to be promising.
Resumo:
The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.
Resumo:
Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES) and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87%) for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.
Resumo:
In the last twenty years aerospace and automotive industries started working widely with composite materials, which are not easy to test using classic Non-Destructive Inspection (NDI) techniques. Pairwise, the development of safety regulations sets higher and higher standards for the qualification and certification of those materials. In this thesis a new concept of a Non-Destructive defect detection technique is proposed, based on Ultrawide-Band (UWB) Synthetic Aperture Radar (SAR) imaging. Similar SAR methods are yet applied either in minefield [22] and head stroke [14] detection. Moreover feasibility studies have already demonstrated the validity of defect detection by means of UWB radars [12, 13]. The system was designed using a cheap commercial off-the-shelf radar device by Novelda and several tests of the developed system have been performed both on metallic specimen (aluminum plate) and on composite coupon (carbon fiber). The obtained results confirm the feasibility of the method and highlight the good performance of the developed system considered the radar resolution. In particular, the system is capable of discerning healthy coupons from damaged ones, and correctly reconstruct the reflectivity image of the tested defects, namely a 8 x 8 mm square bulge and a 5 mm drilled holes on metal specimen and a 5 mm drilled hole on composite coupon.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
This paper describes the development and evaluation of web-based museum trails for university-level design students to access on handheld devices in the Victoria and Albert Museum (V&A) in London. The trails offered students a range of ways of exploring the museum environment and collections, some encouraging students to interpret objects and museum spaces in lateral and imaginative ways, others more straightforwardly providing context and extra information. In a three-stage qualitative evaluation programme, student feedback showed that overall the trails enhanced students’ knowledge of, interest in, and closeness to the objects. However, the trails were only partially successful from a technological standpoint due to device and network problems. Broader findings suggest that technology has a key role to play in helping to maintain the museum as a learning space which complements that of universities as well as schools. This research informed my other work in visitor-constructed learning trails in museums, specifically in the theoretical approach to data analysis used, in the research design, and in informing ways to structure visitor experiences in museums. It resulted in a conference presentation, and more broadly informed my subsequent teaching practice.
Resumo:
Le dimensionnement basé sur la performance (DBP), dans une approche déterministe, caractérise les objectifs de performance par rapport aux niveaux de performance souhaités. Les objectifs de performance sont alors associés à l'état d'endommagement et au niveau de risque sismique établis. Malgré cette approche rationnelle, son application est encore difficile. De ce fait, des outils fiables pour la capture de l'évolution, de la distribution et de la quantification de l'endommagement sont nécessaires. De plus, tous les phénomènes liés à la non-linéarité (matériaux et déformations) doivent également être pris en considération. Ainsi, cette recherche montre comment la mécanique de l'endommagement pourrait contribuer à résoudre cette problématique avec une adaptation de la théorie du champ de compression modifiée et d'autres théories complémentaires. La formulation proposée adaptée pour des charges monotones, cycliques et de type pushover permet de considérer les effets non linéaires liés au cisaillement couplé avec les mécanismes de flexion et de charge axiale. Cette formulation est spécialement appliquée à l'analyse non linéaire des éléments structuraux en béton soumis aux effets de cisaillement non égligeables. Cette nouvelle approche mise en œuvre dans EfiCoS (programme d'éléments finis basé sur la mécanique de l'endommagement), y compris les critères de modélisation, sont également présentés ici. Des calibrations de cette nouvelle approche en comparant les prédictions avec des données expérimentales ont été réalisées pour les murs de refend en béton armé ainsi que pour des poutres et des piliers de pont où les effets de cisaillement doivent être pris en considération. Cette nouvelle version améliorée du logiciel EFiCoS a démontrée être capable d'évaluer avec précision les paramètres associés à la performance globale tels que les déplacements, la résistance du système, les effets liés à la réponse cyclique et la quantification, l'évolution et la distribution de l'endommagement. Des résultats remarquables ont également été obtenus en référence à la détection appropriée des états limites d'ingénierie tels que la fissuration, les déformations unitaires, l'éclatement de l'enrobage, l'écrasement du noyau, la plastification locale des barres d'armature et la dégradation du système, entre autres. Comme un outil pratique d'application du DBP, des relations entre les indices d'endommagement prédits et les niveaux de performance ont été obtenus et exprimés sous forme de graphiques et de tableaux. Ces graphiques ont été développés en fonction du déplacement relatif et de la ductilité de déplacement. Un tableau particulier a été développé pour relier les états limites d'ingénierie, l'endommagement, le déplacement relatif et les niveaux de performance traditionnels. Les résultats ont démontré une excellente correspondance avec les données expérimentales, faisant de la formulation proposée et de la nouvelle version d'EfiCoS des outils puissants pour l'application de la méthodologie du DBP, dans une approche déterministe.
Resumo:
Abstract not available