968 resultados para deep-water corals
Resumo:
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.
Resumo:
One of the expected scientific results of Ocean Drilling Program Leg 167 was to reconstruct the Neogene history of biogenic calcium carbonate accumulation in the northeastern Pacific along the California margin (Lyle, Koizumi, Richter, et al., 1997). This aims to constrain inorganic carbon burial rates, deep-water hydrography in the North Pacific, and linkages between deep Atlantic and Pacific circulation and carbonate accumulation or dissolution patterns. Data are presented for four sites. Two of them are located in the California bight-East Cortez Basin (Site 1012: 32°16.970?N 118°23.024?W, 1773 m) and San Nicholas Basin (Site 1013: 32°48.040??, 118°53.992?W, 1564 m). The others are the dedicated Hole 1017E at Site 1017 (34°32.099?N, 121°6.430?W, 955 m) and Site 1019 in the Eel River Basin (41¢X40.972?N, 124°55.975?W, 977 m). Reconstruction of paleo-sea-surface temperatures (SST) by determining the alkenone unsaturation index of the extractable organic matter is an independent technique and helps to verify oxygen-isotope-based estimates. Results from the uppermost 600 cm of the dedicated Hole 1017E are expected to reveal the local temperature history of the last 30 k.y.
Resumo:
Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.
Resumo:
Particles of detritus were counted by size-groups and microplankton cells in samples stained with acid fuchsin and acridine orange. Data were obtained for eutrophic and oligotrophic waters. Seston in the eutrophic layer of eutrophic waters consists of 22-65% phytoplankton, 3-18% microzooplankton, and 32-65% detritus; in oligotrophic waters - of 3-7% phytoplankton, 1-5% microzooplankton, and 92-97% detritus. Amount of detritus in seston increases with depth up to 4.4 µg C/l (sigma = 1.48) at 500-4000 m. Microplankton biomass in deep water contains mostly olive-green cells and bacteria; no microzooplankton <200 µm long was found below 200 m. Aggregates 10-50 µm in diameter and fragments of organisms 50-200 µm long were dominant by weight among detrital particles. No discernible associations of microorganisms with detrital particles were observed.
Resumo:
A detailed age model for core 17957-2 of the southern South China Sea was developed based on delta18O, coarse fraction, magnetostratigraphy, and biostratigraphy for the last 1500 kyr. The delta18O record has clear ~100-kyr cycles after the Mid-Pleistocene Revolution (MPR) at the entrance of marine isotopic stage (MIS) 22. Planktonic foraminifera responded to the MPR immediately, showing the increased sea surface temperature (SST) and dissolution after the MPR. Benthic foraminifera did not respond to it until the Brunhes/Matuyama boundary. Since the MPR, the depth of thermocline gradually became shallower until MISs 6-5. This major change within MISs 6-5 was also reflected in the decreased SSTs and increased productivity and Deep Water Mass. Thus two major Pleistocene paleoceanographic changes were found: One was around the MPR; the other occurred within MISs 6-5, which speculatively might be ascribed to the reorganization of surface and deep circulation, possibly induced by tectonic forces.
Resumo:
The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.
Resumo:
The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.
Resumo:
Benthic foraminiferal stable isotope records for the past 11 Myr from a recently drilled site in the sub-Antarctic South Atlantic (Site 1088, Ocean Drilling Program Leg 177, 41°S, 15°E, 2082 m water depth) provide, for the first time, a continuous long-term perspective on deep water distribution patterns and Southern Ocean climate change from the late Miocene through the early Pliocene. I have compiled published late Miocene through Pliocene stable isotope records to place the new South Atlantic record in a global framework. Carbon isotope gradients between the North Atlantic, South Atlantic, and Pacific indicate that a nutrient-depleted watermass, probably of North Atlantic origin, reached the sub-Antarctic South Atlantic after 6.6 Ma. By 6.0 Ma the relative proportion of the northern-provenance watermass was similar to today and by the early Pliocene it had increased to greater than the modern proportion suggesting that thermohaline overturn in the Atlantic was relatively strong prior to the early Pliocene interval of inferred climatic warmth. Site 1088 oxygen isotope values display a two-step increase between ~7.4 Ma and 6.9 Ma, a trend that parallels a published delta18O record of a site on the Atlantic coast of Morocco. This is perhaps best explained by a gradual cooling of watermasses that were sinking in the Southern Ocean. I speculate that relatively strong thermohaline overturn at rates comparable to the present day interglacial interval during the latest Miocene may have provided the initial conditions for early Pliocene climatic warmth. The impact of an emerging Central American Seaway on Atlantic-Pacific Ocean upper water exchange may have been felt in the North Atlantic beginning in the latest Miocene between 6.6 and 6.0 Ma, which would be ~1.5 Myr earlier than previously thought.
Resumo:
A suit of sediment cores close to and south of the Strait of Gibraltar (12°-36°N, 500-2800 m water depth) were analyzed for stable isotopes in epibenthic foraminifers Cibicidoides wuellerstorfi and Planulina ariminensis. During peak glacial times, the data exhibit higher delta13C values of up to 1.6 per mil at intermediate depths near the Strait of Gibraltar (36°N). The values decrease to the south as evidenced by our data, but also to the north as revealed by data of intermediate depth cores north of 38°N (in Duplessy et al. (1987)). Thus, the distribution pattern of delta13C provides crucial evidence for an increased influence of nutrient depleted Mediterranean Outflow Water (MOW) on the glacial northeast Atlantic hydrography. During oxygen isotope Terminations I and II, the meridional carbon isotope gradient indicates a significantly decreased but still active MOW. As deduced from the delta18O fluctuations, the temperatures of the MOW in the Atlantic were lower during glacial times by as much as 5°C. During glacial times and during Termination I the maximum delta13C values of the MOW correlate with minimum values of the North Atlantic Deep Water (NADW) and vice versa. This inverse response to climatic change of the carbon isotope signals of both water masses indicates, that the supply of saline MOW to the north Atlantic may be less important for the formation of NADW than previously assumed.
Resumo:
A core from the Mid-Atlantic Ridge at 43.5°N and ~3 km water depth shows distinct evidence of the deglacial events known as Heinrich event 1 (probably the marine equivalent of Oldest Dryas cooling in Europe) and the Younger Dryas. The Heinrich event, dated at three levels to between 14.3 and 15.0 ka, is marked by a minimum in foraminifera per gram, by maxima in rates of sedimentation, ice rafted debris per gram, and relative abundance of N. pachyderma (s.), and by a delta18O minimum in planktonic foraminifera. The Younger Dryas event is marked by peak abundance of N. pachyderma (s.) and a planktonic delta18O maximum. Benthic foraminiferal delta13C reaches minimum values during both the Heinrich event and the Younger Dryas. Our data indicate pronounced changes in surface water properties were coupled with reduced production of North Atlantic Deep Water at each of these times.
Resumo:
Large changes in benthic foraminiferal delta180 and delta13C occurred during the Pliocene (between 3.0 and 2.0 Ma) at Hole 665A. Oxygen isotopic compositions increased to maximum values at 2.4 Ma, correlating with an 18O enrichment observed at Hole 552A and other locations (Shackleton et al., 1984). As at Hole 606 (Keigwin, 1986), however, maximum delta180 values at 2.4 Ma were not as great as at Hole 552A, and enrichments in delta180 also occurred before 2.4 Ma. We believe that the section representing sediments from 2.5 to 2.7 or 2.8 Ma is missing at Hole 552A because of incomplete core recovery. Consequently, the older delta180 increases are not found at Hole 552A. Benthic foraminiferal delta13C values are much lower at Hole 665A than at Hole 552A, approaching the low values observed in the Pliocene Pacific Ocean. This geographic distribution of delta13C suggests that, like late Quaternary glaciations, the equatorial Atlantic Ocean was dominated during the Pliocene by deep water that originated in the Southern Ocean and had chemical characteristics very similar to the Pacific Ocean. Reduced O2 values were probably associated with low delta13C values and contributed to increased preservation of organic carbon during enriched 180 intervals of the Pliocene equatorial Atlantic.
Resumo:
Facies zonation of the Cape basin with respect to Fe-Mn nodules based on data from Cruise 43 of R/V Akademik Kurchatov and published data is presented. Three facies regions are distinguished: the southern end of the Walvis Ridge and seamounts, the continental slope of the Southwest Africa and the deep-water Cape Basin. Iron-manganese nodules in the first of these areas are predominantly sedimentary, those in the second area are diagenetic and those in the third are sedimentary-diagenetic. Chemical characteristics and type of metallogenic specialization for each of the regions are identified.
Resumo:
Dates and growth rates of iron-manganese nodules obtained by various direct and indirect methods, including radiometric, micropaleontological, geological and experimental, are discussed. Validity of assumptions, on which the radiometric dating of nodules is based and reliability of results are discussed. The problem of "buoyancy" of slow-growing nodules resting on the surface of faster-accumulating sediments is considered: It may be caused by action of deep-water fauna, bottom currents, or plastic properties of sediments.
Resumo:
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.