970 resultados para decay
Resumo:
Biodiesel production by methanolysis of semi-refined rapeseed oil was studied over lime based catalysts. In order to improve the catalysts basicity a commercial CaO material was impregnated with aqueous solution of lithium nitrate (Li/Ca = 03 atomic ratio). The catalysts were calcined at 575 degrees C and 800 degrees C, for 5 h, to remove nitrate ions before reaction. The XRD patterns of the fresh catalysts, including the bare CaO, showed lines ascribable to CaO and Ca(OH)(2). The absence of XRD lines belonging to Li phases confirms the efficient dispersion of Li over CaO. In the tested condition (W-cat/W-oil = 5%; CH3OH/oil = 12 molar ratio) all the fresh catalysts provided similar biodiesel yields (FAME >93% after 4 h) but the bare CaO catalyst was more stable. The activity decay of the Li modified samples can be related to the enhanced, by the higher basicity, calcium diglyceroxide formation during methanolysis which promotes calcium leaching. The calcination temperature for Li modified catalysts plays an important role since encourages the crystals sinterization which appears to improve the catalyst stability. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The Higgs boson recently discovered at the Large Hadron Collider has shown to have couplings to the remaining particles well within what is predicted by the Standard Model. The search for other new heavy scalar states has so far revealed to be fruitless, imposing constraints on the existence of new scalar particles. However, it is still possible that any existing heavy scalars would preferentially decay to final states involving the light Higgs boson thus evading the current LHC bounds on heavy scalar states. Moreover, decays of the heavy scalars could increase the number of light Higgs bosons being produced. Since the number of light Higgs bosons decaying to Standard Model particles is within the predicted range, this could mean that part of the light Higgs bosons could have their origin in heavy scalar decays. This situation would occur if the light Higgs couplings to Standard Model particles were reduced by a concomitant amount. Using a very simple extension of the SM - the two-Higgs doublet model we show that in fact we could already be observing the effect of the heavy scalar states even if all results related to the Higgs are in excellent agreement with the Standard Model predictions.
Resumo:
The latest LHC data confirmed the existence of a Higgs-like particle and made interesting measurements on its decays into gamma gamma, ZZ*, WW*, tau(+)tau(-), and b (b) over bar. It is expected that a decay into Z gamma might be measured at the next LHC round, for which there already exists an upper bound. The Higgs-like particle could be a mixture of scalar with a relatively large component of pseudoscalar. We compute the decay of such a mixed state into Z gamma, and we study its properties in the context of the complex two Higgs doublet model, analysing the effect of the current measurements on the four versions of this model. We show that a measurement of the h -> Z gamma rate at a level consistent with the SM can be used to place interesting constraints on the pseudoscalar component. We also comment on the issue of a wrong sign Yukawa coupling for the bottom in Type II models.
Resumo:
We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 x 10(15) GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.
Resumo:
We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1 sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.
Resumo:
We show that a light charged Higgs boson signal via tau(+/-)nu decay can be established at the Large Hadron Collider (LHC) also in the case of single top production. This process complements searches for the same signal in the case of charged Higgs bosons emerging from t (t) over bar production. The models accessible include the Minimal Supersymmetric Standard Model (MSSM) as well a variety of 2-Higgs Doublet Models (2HDMs). High energies and luminosities are however required, thereby restricting interest on this mode to the case of the LHC running at 14TeV with design configuration.
Resumo:
LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.
Resumo:
Este trabalho tem como objetivo a modelação hidráulica e de qualidade de água de parte de uma rede de distribuição a alta pressão do grande Porto. Após calibração de um modelo utilizado no software EPANet foi possível simular o decaimento do cloro livre num troço da rede de abastecimento. Foi ainda possível concluir que os valores dos parâmetros característicos do modelo de qualidade são uma constante de decaimento no seio do fluido de 1,78 dia-1 (0,001239 min-1) a cerca de 22 ºC e, no ramal 6244-6245 Ramalde – Cabanas – Pedrouços, uma constante de decaimento na parede da tubagem de forma generalizada de 0,28 m/dia. Não foi possível obter conclusões sobre a adutora 6261 Jovim-Nova Sintra 2, ficando explícita a necessidade de um maior controlo sobre a variável temperatura.
Resumo:
The industrialization of traditional processes relies on the scientific ability to understand the empirical evidence associated with traditional knowledge. Cork manufacturing includes one operation known as stabilization, where humid cork slabs are extensively colonized by fungi. The implications of fungal growth on the chemical quality of cork through the analysis of putative fungal metabolites have already been investigated. However, the effect of fungal growth on the mechanical properties of cork remains unexplored. This study investigated the effect of cork colonization on the integrity of the cork cell walls and their mechanical performance. Fungal colonization of cork by Chrysonilia sitophila, Mucor plumbeus Penicillium glabrum, P. olsonii, and Trichoderma longibrachiatum was investigated by microscopy. Growth occurred primarily on the surface of the cork pieces, but mycelium extended deeper into the cork layers, mostly via lenticular channels and by hyphal penetration of the cork cell wall. In this first report on cork decay in which specific correlation between fungal colonization and mechanical proprieties of the cork has been investigated, all colonizing fungi except C. sitophila, reduced cork strength, markedly altering its viscoelastic behaviour and reducing its Young’s modulus.
Resumo:
Over the past few decades there has been some discussion concerning the increase of the natural background radiation originated by coal-fired power plants, due to the uranium and thorium content present in combustion ashes. The radioactive decay products of uranium and thorium, such as radium, radon, polonium, bismuth and lead, are also released in addition to a significant amount of 40K. Since the measurement of radioactive elements released by the gaseous emissions of coal power plants is not compulsory, there is a gap of information concerning this situation. Consequently, the prediction of dispersion and mobility of these elements in the environment, after their release, is based on limited data and the radiological impact from the exposure to these radioactive elements is unknown. This paper describes the methodology that is being developed to assess the radiological impact due to the raise in the natural background radiation level originated by the release and dispersion of the emitted radionuclides. The current investigation is part of a research project that is undergoing in the vicinity of Sines coal-fired power plant (south of Portugal) until 2013. Data from preliminary stages are already available and possible of interpretation.
Resumo:
Aging is a long-standing biological question of tremendous social and cultural importance. Despite this, only in the last 15 years has biology started to make significant progress in understanding the underlying mechanisms that regulate aging. This progress stemmed mainly from the use of model organisms, which allowed the discovery of several genes directly modulating longevity. Interestingly, several of these longevity genes are necessary for normal mitochondrial function, and disruption of their activity delays the aging process. This is somewhat paradoxical, considering the importance of cellular respiration for energy production and viability of eukaryotic organisms. One possible rationalization for this is that by decreasing cellular respiration, reactive oxygen species (ROS) generation is also reduced, and in that way, cellular decay and aging are delayed.(...)
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
This paper refers to the assessment on site by semi-destructive testing (SDT) methods of the consolidation efficiency of a conservation process developed by Henriques (2011) for structural and non-structural pine wood elements in service. This study was applied on scots pine wood (Pinus sylvestris L.) degraded by fungi after treatment with a biocidal product followed by consolidation with a polymeric product. This solution avoids substitutions of wood moderately degraded by fungi, improving its physical and mechanical characteristics. The consolidation efficiency was assessed on site by methods of drill resistance and penetration resistance. The SDT methods used showed good sensitivity to the conservation process and could evaluate their effectiveness. (C) 2015 Elsevier Ltd. All rights reserved.