897 resultados para cyber-physical systems
Resumo:
Usually, the kinetic models used in the study of sintered ceramic are performed by means of indirect physical tests, such as, results obtained from data of linear shrinkage and mass loss. This fact is justified by the difficulty in the determinations of intrinsic parameters of ceramic materials along every sintering process. In this way, the technique of atomic force microscopy (AFM) was used in order to determine the importance and the evolution of the dihedral angle in the sintering of 0.5 mol% MnO2-doped tin dioxide obtained by the polymeric precursor method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms (DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models. The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly discussed. The important role played by the model symmetries is also examined. Special emphasis is given to the DMRG.
Resumo:
The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.
Resumo:
New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.
Resumo:
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential v(i) can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction U-i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for a reexamination of model calculations assuming spatial homogeneity.
Resumo:
Using a new reverse Monte Carlo algorithm, we present simulations that reproduce very well several structural and thermodynamic properties of liquid water. Both Monte Carlo, molecular dynamics simulations and experimental radial distribution functions used as input are accurately reproduced using a small number of molecules and no external constraints. Ad hoc energy and hydrogen bond analysis show the physical consistency and limitations of the generated RMC configurations. (C) 2001 American Institute of Physics.
Resumo:
The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction.