811 resultados para crowdfunding,equity-based crowdfunding,financial forecasting
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Includes bibliography
Resumo:
A risks management, carried on in an effective way, leads the software development to success and may influence on the organization. The knowledge takes part of such a process as a way to help taking decisions. This research aimed to analyze the use of Knowledge Management techniques to the Risk Management in software projects development and the possible influence on the enterprise revenue. It had, as its main studying subject, Brazilian incubated and graduated software developing enterprises. The chosen research method was the Survey type. Multivariate statistical methods were used for the treatment and analysis of the obtained results, this way identifying the most significant factors, that is, enterprise's achievement constraining factors and those outcome achievement ones. Among the latter we highlight the knowledge methodology, the time of existence of the enterprise, the amount of employees and the knowledge externalization. The results encourage contributing actions to the increasing of financial revenue. © 2013 Springer-Verlag.
Resumo:
Includes bibliography
Resumo:
This paper analyzes land use change in Rio Claro City and its surroundings, located in the southeastern state of Sao Paulo, in the period from 1988 to 1995, using air-borne digital imagery and a cellular automata model. The simulation experiment was carried out in the Dinamica EGO platform and the results revealed a constrained urban sprawl, resulting from both the densification of residential areas implemented in previous years and the economic recession that led to an internal financial crisis in Brazil during the early 1990s. The simulation outputs were validated using a multi-resolution procedure based on a fuzzy similarity index and showed a satisfactory fitness in relation to the historical reference data. © 2013 IEEE.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Considering the relevance of researches concerning credit risk, model diversity and the existent indicators, this thesis aimed at verifying if the Fleuriet Model contributes in discriminating Brazilian open capital companies in the analysis of credit concession. We specifically intended to i) identify the economic-financial indicators used in credit risk models; ii) identify which economic-financial indicators best discriminate companies in the analysis of credit concession; iii) assess which techniques used (discriminant analysis, logistic regression and neural networks) present the best accuracy to predict company bankruptcy. To do this, the theoretical background approached the concepts of financial analysis, which introduced themes relative to the company evaluation process; considerations on credit, risk and analysis; Fleuriet Model and its indicators, and, finally, presented the techniques for credit analysis based on discriminant analysis, logistic regression and artificial neural networks. Methodologically, the research was defined as quantitative, regarding its nature, and explanatory, regarding its type. It was developed using data derived from bibliographic and document analysis. The financial demonstrations were collected by means of the Economática ® and the BM$FBOVESPA website. The sample was comprised of 121 companies, being those 70 solvents and 51 insolvents from various sectors. In the analyses, we used 22 indicators of the Traditional Model and 13 of the Fleuriet Model, totalizing 35 indicators. The economic-financial indicators which were a part of, at least, one of the three final models were: X1 (Working Capital over Assets), X3 (NCG over Assets), X4 (NCG over Net Revenue), X8 (Type of Financial Structure), X9 (Net Thermometer), X16 (Net Equity divided by the total demandable), X17 (Asset Turnover), X20 (Net Equity Profitability), X25 (Net Margin), X28 (Debt Composition) and X31 (Net Equity over Asset). The final models presented setting values of: 90.9% (discriminant analysis); 90.9% (logistic regression) and 97.8% (neural networks). The modeling in neural networks presented higher accuracy, which was confirmed by the ROC curve. In conclusion, the indicators of the Fleuriet Model presented relevant results for the research of credit risk, especially if modeled by neural networks.
Resumo:
This article focuses on the financial crisis beginning in 2008. Drawing on the work of Lebaron (2010; 2011) and (Grün 2010), the study seeks to grasp the cognitive dimension of the crisis through the discourses produced (and reproduced) by members of the Brazilian government involved in controlling the crisis and by the pension fund sector and its strategies. The method was based on analysis of documents produced by the pension fund sector and the Lula Administration in 2008 and the spinoffs of the discourses and strategies. The text indicates the construction of a discourse emphasizing the importance of state regulation (as opposed to market self-regulation) and the central role of pension funds during the process, since they partially abandoned government bonds and migrated to productive investment, in alliance with the private equity sector, especially in financing construction works under the Growth Acceleration Program.