793 resultados para cotton nutrition
Resumo:
The cotton disease known as angular leaf spot, caused by Xanthomonas axonopodis pv. malvacearum (Xam) has been causing cotton losses in several producing regions around the world. Xam is transmitted by seeds, which may be infected both externally and internally. Infected seeds constitute the main long-distance dissemination mode of the pathogen. In view of this, the use of healthy seeds is a must. To accomplish that, detection methodologies for the bacteria must be developed be used in seed health analysis laboratories. This study aimed to develop a semi-selective medium for Xam detection in cotton seeds. The semi-selective culture medium was named MSSXAN and it was consisted of peptone (5.0 g), beef extract (3 g), sucrose (5 g), soluble starch (10 g), agar (15 g), CaCl 2 (0.25 g), Tween 80 (10 mL), distilled water (1,000 mL), crystal violet solution at 1% (150 μL), cephalexin (50 mg 1*), methyl thyophanate (10 mg*) and chlorothalonil (10 mg*) - *added after culture medium autoclaving. This MSSXAN medium shows low repressiveness to Xam and it be used for isolation of this bacteria in cotton seeds health analysis. © 2009 Academic Journals Inc.
Resumo:
Includes bibliography
Resumo:
The control of cotton pests may be accomplished using Bacillus thuringiensis Cry proteins. For this purpose, the objective of this work was to evaluate the insecticidal activity of a new Cry1Ia protein against neonatal larvae of Spodoptera frugiperda and Anthonomus grandis. The complete cry1Ia gene, previously obtained by PCR with oligonucleotide primers based on the sequenced gene, was cloned into the vector pET28a(+), introduced into Escherichia coli BL21(DE3) and expressed by induction with IPTG. The expression of the Cry1Ia protein was confirmed with molecular weight of approximately 81 kDa. The results demonstrated the efficiency of the bacterial system for the expression of B. thuringiensis Cry1Ia protein, which was subsequently used in quantitative bioassays against S. frugiperda and A. grandis larvae, resulting in an extremely toxic protein for both species. This characteristic is exceptionally important for obtaining transgenic cotton plants resistant to these pests.
Resumo:
The pathogens manifestation in plantations are the largest cause of damage in several cultivars, which may cause increase of prices and loss of crop quality. This paper presents a method for automatic classification of cotton diseases through feature extraction of leaf symptoms from digital images. Wavelet transform energy has been used for feature extraction while Support Vector Machine has been used for classification. Five situations have been diagnosed, namely: Healthy crop, Ramularia disease, Bacterial Blight, Ascochyta Blight, and unspecified disease. © 2012 Taylor & Francis Group.
Resumo:
Background: Staphylococcus is a clinically important genus because of its capacity to produce enterotoxins and to cause food poisoning. Staphylococci are the most frequent microorganisms of the skin and mucosal microbiota, with an estimated 20 to 40% of individuals carrying these bacteria on their hands or nose. Since nutrition professionals are involved in the handling and preparation of foods and are possible carriers of these bacteria, the objective of this study was to investigate the presence of Staphylococcus on the hands and in the nasal fossae of undergraduate nutrition students and to determine the enterotoxigenic capacity of these microorganisms. Methods and Findings: A total of 201 strains were isolated from the hands and nose of 61 nutrition students. Of these, 180 (89.5%) were identified as coagulasenegative staphylococci and 21 (10.5%) as S. aureus. Thirty-seven (18.4%) Staphylococcus isolates were producers of enterotoxin A. Toxin production was detected in 5 (19%) of the S. aureus isolates and in 31 (17.2%) of the coagulase-negative staphylococci. Conclusions: This study demonstrated a large number of enterotoxin-producing staphylococci on the hands and nose of nutrition students and professionals involved in the handling and preparations of foods. These findings indicate the need for adequate hygiene measures to prevent food poisoning. © iMedPub.
Resumo:
A better understanding of the differential growth of upland rice (Oryza sativa L.) cultivars with increasing soil S availability could help improve rice yield under upland conditions. The objective of this study was to evaluate root and shoot growth and nutrition of upland traditional and modern rice cultivars as affected by S availability. The experimental design was completely randomized in a 3 (rates of S) × 3 (cultivars) factorial with four replications. Low availability of S in the soil reduces root and shoot development and the efficiency of N, P, and S uptake, as well as the concentration and content of these nutrients in rice cultivars. At 0 mg dm-3 of S, rice cultivars prioritize root growth over shoots, and the traditional cultivar does so with greater intensity. Our results suggested that more development of traditional cultivars under low S availability facilitates its adaptation in soils under this condition. On the other hand, the intermediate and modern cultivars are more responsive to S fertilization. Moreover, S fertilization allows significant increases in upland rice growth and must be considered in cropping systems aiming for high yields. © Soil Science Society of America.
Resumo:
The study of nutrient uptake is of fundamental importance to plant nutrition, as well as tell the time (growth stage) being absorbed by the culture, also signals to the levels of fertilizer to be used. Aiming to establish the uptake of nitrogen for cultivation of cotton (Gossypium hirsutum L. r. latifolium Hutch.) led to an experiment in a Alfissol under randomized block design with two treatments, sowing conventional tillage and after tillage on the straw of previous crop (millet), with five replicates. Samples were taken according to the phenology and plants development. The dry matter accumulation in cotton is linear and increasing until the period of large boll, being more intense with the appearance of flowers and boll, or 50 to 100 days after emergence. The nitrogen content is higher in newly emerged plants, having peaks at the beginning of the appearance of squares and flowers, and from the appearance of small boll, the nitrogen content in the plant decreases linearly. The extraction of nitrogen is bigger from the appearance of flowers (55-60 days after emergence).
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Iron (Fe) is essential for chlorophyll formation and plant growth. Irondeficiency chlorosis is a major nutritional disorder in several fruit trees cultivated in calcareous and alkaline soils, reducing fruit yield and quality and causing heavy economic losses. Since chelated Fe, the most widespread fertilizers used for preventing or curing Fe deficiency, pose risks of environmental pollution, the development of sustainable agronomic alternatives represents a priority for the fruit industry. In this work, we investigated the effectiveness of a bovine blood-derived product (BB; 0,125% Fe) for preventing Fe-deficiency in grapevine plants. During the vegetative season 2011 potted plants of five graft combinations: Sangiovese/S4O, Cabernet Sauvignon/S4O and Cabernet Sauvignon/140 Ruggeri, 140 Ruggeri/Cabernet Sauvignon, Vitis riparia/Cabernet Sauvignon were grown on calcareous soil. Soil treatments included: 1) Control; 2) Fe-EDDHA (Fe 6%); 3) Bovine-Blood (5 g/L); 4) Bovine-Blood (20 g/L). With the exception of Cabernet Sauvignon/S4O plants, Fe-EDDHA increased SPAD units (leaf chlorophyll content). Bovine-blood at low concentrations had similar or higher SPAD units than Fe-EDDHA. Increasing concentration resulted in further increases in SPAD units only in some graft combinations. Data highlight the efficiency of Fe blood-compound in the prevention of grapevine Fe-deficiency over one growing season.
Resumo:
Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.
Resumo:
Human eyes have a remarkable ability to recognize hundreds of colour shades, which has stimulated the use of colorants, especially for clothing, but toxicological studies have shown that some textile dyes can be hazardous to human health. Under conditions of intense perspiration, dyes can migrate from coloured clothes and penetrate into human skin. Garments made from cotton fabrics are the most common clothing in tropical countries, due to their high temperatures. Aiming to identify safe textile dyes for dyeing cotton fabrics, the genotoxicity [in vitro Comet assay with normal human dermal fibroblasts (NHDF), Tail Intensity] and mutagenicity [Salmonella/microsome preincubation assay (30 min), tester strains TA98, TA100, YG1041 and YG1042] of Reactive Blue 2 (RB2, CAS No. 12236-82-7, C.I. 61211) and Reactive Green 19 (RG19, CAS No. 61931-49-5, C.I. 205075) were evaluated both in the formulated form and as extracted from cotton fibres using different artificial sweats. Both the dyes could migrate from cotton fibres to sweat solutions, the sweat composition and pH being important factors during this extraction. However, the dye sweat solutions showed no genotoxic/mutagenic effects, whereas a weak mutagenic potential was detected by the Ames test for both dyes in their formulated form. These findings emphasize the relevance of textile dyes assessment under conditions that more closely resemble human exposure, in order to recognize any hazard. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.