847 resultados para computational creativity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of molecular computation1, 2, experimental molecular computational elements have grown3, 4, 5 to encompass small-scale integration6, arithmetic7 and games8, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size9 (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 m) used for synthesis of combinatorial libraries10, 11. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol12. Our focus on converting molecular science into technology concerning analog sensors13, 14, turns to digital logic devices in the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the application of quantitatively accurate computational methods to the study of laser-driven two-electron atoms in short intense laser pulses. The fundamental importance of such calculations to the subject area is emphasized. Calculations of single- and double-electron ionization rates at 390 nm are presented. (C) 2001 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion: electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H-3(+) and water at their dissociation limits; laser- heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.