759 resultados para column classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short video on laser classification produced by the National Physical Laboratory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo analiza el sector cervecero colombiano y las oportunidades de importación de cerveza artesanal generadas por el TLC Estados Unidos- Colombia. También se describe la relación comercial entre Colombia y Estados Unidos durante el periodo comprendido entre los años 2000 y 2013 junto con la inflación y la tasa de desempleo. Para finalizar se realiza un pronóstico de la demanda y un modelo de inventarios para el posible importador y se brindan sugerencias en cuanto a la distribución de la cerveza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyzes the juridical controversy related to whether a person that providesservices to a company in which is partner, can be qualified or considered as adependent employee of it. In order to accomplish that purpose, the article providesa critical study of the doctrine of the Chilean Department of Labor (Dirección deTrabajo) in contrast to the jurisprudence of the Chilean courts of justice. From there,the author develops criteria that can serve as guidance towards the resolution of disputesof this nature. To this end, an interdisciplinary study is done, which combinesboth the essential elements of the contract of employment, mainly the element ofalienation, with the characteristics of each type of company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.