935 resultados para collagen degradation
Resumo:
Dry matter intake (DMI) of coast-cross grazing by crossbred Holstein-Zebu and Zebu lactating cows was calculated using in vitro dry matter digestibility from extrusa (four esophageal fistulated cows) and fecal output estimate with mordent chromium. Pasture was rotationally grazed with three days grazing period and 27 days testing period, adopting a stocking rate of 1.6 and 3.2 cows/ha, during the dry and rainy season respectively. Voluntary DMI was estimated from degradation characteristics using different equations. Predicted coast-cross DMI varied with models. The prediction of tropical forages dry matter intake from equations based in ruminal degradation parameters needs farther investigation before being employed in practice.
Resumo:
The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < PH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbOx (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at PH 2.2 and potential of +2.4 V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 K PH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1 h of electrolysis the results indicated total color removal and 37% of mineralization. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.
Resumo:
The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Propanil and its major degradation product, 3,4-dichloroaniline (DCA), were monitored in surface water and soil samples from two rice fields of the Ebre Delta area (Tarragona, Spain) following agricultural application. On-line solid-phase extraction (SPE) (water) and Soxhlet extraction (soil) followed by liquid chromatography/diode array detection (LC/DAD) were used for the trace determination of both compounds. Unequivocal confirmation/identification was conducted by using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, LC/APCI/MS (using negative and positive ionization modes). Concentrations of the herbicide propanil in water samples varied from 1.9 to 55.9 mu g/L. Propanil degraded very rapidly to DCA, and high concentrations of this product were found, varying from 16.5 to 470 mu g/L in water and 119 +/- 22 mu g/kg in soil samples. No detectable DCA (<0.001%) was found in the applied pesticide formulation, indicating that DCA formation took place after propanil application. These field results compared favorably with laboratory experiments showing that humic interactions had a strong influence on the pesticide degradation. The half-lifes under real conditions for propanil and DCA, calculated using a first-order decay, were 1.2 and 1.6 days, respectively.
Resumo:
The influence of pH on the degradation of the herbicide tebuthiuron (TBH) was investigated using in situ generated Fe(III)-citrate complexes (Fe:cit) submitted to the photo-Fenton process under solar irradiation. Using Fe:cit in a wide pH range (2.5-7.5), 100-78% TBH oxidation was achieved respectively from a UV dose of 2.0 J cm(-2) (15 min). Moreover, the oxidation of TBH obtained in the presence of Fe:cit at pH 6.0 was higher than that obtained using Fe(NO3)3 at pH 2.5. A similar behavior is observed for the removal of total organic carbon (TOC) in TBH solutions. In the presence of Fe:cit, 20% and 85% of TOC was removed at pH 7.5 and 2.5, respectively, after 7.5 J cm-2 irradiation, while no mineralization was observed employing Fe(NO3)(3) for the same UV dose. Using Fe(NO3)(3), mineralization was observed only after 11 J cm-2 (8%). A higher mineralization rate was obtained with Fe(NO3)(3) only when a concentration three times higher was employed at pH 2.5. Besides the high efficiency of TBH degradation observed using the ferric citrate complex in the solar photo-Fenton process, it also offers the advantage of application at a pH of up to 7.5. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
HDPE and PVC geomembranes are sensitive to changes in their properties when in contact with high temperatures. The effects of hot temperature on polymeric geomembranes are assessed by the ASTM D794 and ASTM D5721.This paper brings an analysis of degradation of the Poly Vinyl Chloride (PVC) and High Density Poly Ethylene (HDPE) geomembranes when exposed to conventional and air oven after specific periods.. Mechanical and physical properties were evaluated. OIT tests were also performanced to evaluate the level of oxidation degradation occurred on the HDPE geomembranes. Geomembranes of two thicknesses were tested: 1.0, 2.0 nun (PVC) and 0.8, 2.5 mm, (HDPE). The results obtained show, for example, that after the last period of exposure, the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to heat presented increases in deformation. OIT tests showed efficient to detect some level of degradation on the HDPE geomembranes.
Resumo:
This study aims to evaluate the effect of using anionic collagen membranes in guided tissue regeneration treatment of Class II furcation lesions in dogs. The defects were created in the buccal furcation of 16 mandibular premolars of four dogs. After 56 days without plaque control, the sites were scaled and divided into two groups according to the treatment applied: control sites, open flap debridement; and test sites, guided tissue regeneration treatment. The animals were killed after 3 months. Histological and histometrical analyses showed that the collagen membrane was better than open flap debridement in terms of newly formed cementum and epithelial migration prevention. It provided effective blockade of epithelial tissue and promoted regeneration of lost periodontal tissues, suggesting that the membrane warrants further study. (C) 1997 Elsevier B.V. Limited. All rights reserved.
Resumo:
Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.