983 resultados para charged negative-ions
Resumo:
A procedure is offered for evaluating the forces between classical, charged solitons at large distances. This is employed for the solitons of a complex, scalar two-dimensional field theory with a U(1) symmetry, that leads to a conserved chargeQ. These forces are the analogues of the strong interaction forces. The potential,U(Q, R), is found to be attractive, of long range, and strong when the coupling constants in the theory are small. The dependence ofU(Q, R) onQ, the sum of the charges of the two interacting solitons (Q will refer to isospin in the SU(2) generalisation of the U(1) symmetric theory) is of importance in the theory of strong interactions; group theoretical considerations do not give such information. The interaction obtained here will be the leading term in the corresponding quantum field theory when the coupling-constants are small.
Resumo:
High nonlinearity coefficients of 60–150 are observed in the current‐voltage (I‐V) curves of the mixed phase ceramics formed by cosintering ZnO with spinel phases having large negative temperature coefficients (NTCs) in resistivity. The region of negative slope in the I‐V curves of the NTC ceramics is progressively made positive with ZnO phase content, wherein ZnO grains function as a built‐in resistor in series to the resistance of the NTC phase. High α depends on the optimum phase content of ZnO as much as its intrinsic conductivity. The studies indicate that the predominent contribution to power dissipation is by way of joule heating from the resistive component of the current.
Resumo:
Kinetics of the interaction of Au(III) with native calf thymus DNA has been studied spectrophotometrically to determine the kinetic parameters and to examine their dependency on the concentrations of DNA and Au(III), temperature, ionic strength and pH. The reaction is of the first order with respect to both the nucleotide unit of DNA and Au(III) in the stoichiometry of 2∶1 respectively. The rate constants vary with the initial ratio of DNA to Au(III) and is attributed to the effect of free chloride ions and the existence of a number of reaction sites with slight difference in the rate constants. The activation energies of this interaction have been found to be 14–16 kcal/mol. From the effect of ionic strength the reaction is found to occur between a positive and a negative ion in the rate-limiting step. The logarithm of rate constants are the linear function of pH and the slopes are dependent on ther-values. A plausible mechanism has been proposed which involves a primary dissociation of the major existing species (AuCl2(OH)2)−, to give (AuCl2)+ which then reacts with a site in the nucleotide unit of DNA in the rate-liminting step followed by a rapid binding to another site on the complementary strand of the DNA double helix. There exist a number of binding sites with slight difference in reactivity.
Resumo:
Coagulase-negative staphylococci (CNS) are the most common bacteria isolated in bovine subclinical mastitis in many countries, and also a frequent cause of clinical mastitis. The most common species isolated are Staphylococcus (S) chromogenes, S. simulans, S. epidermidis, and S. xylosus. One half of the intramammary infections (IMI) caused by CNS persist in the udder. The pathogenesis of IMI caused by CNS is poorly understood. This dissertation focuses on host response in experimental intramammary infection induced by S. chromogenes, S. epidermidis and S. simulans. Model for a mild experimental CNS infection was developed with S. chromogenes (study I). All cows were infected and most developed subclinical mastitis. In study II the innate immune response to S. epidermidis and S. simulans IMI was compared in eight cows using a crossover design. A larger dose of bacteria was used to induce clinical mastitis. All cows became infected and showed mild to moderate clinical signs of mastitis. S. simulans caused a slightly stronger innate immune response than S. epidermidis, with significantly higher concentrations of the interleukins IL-1beta and IL-8 in the milk. The spontaneous elimination rate of the 16 IMIs was 31%, with no difference between species. No significant differences were recorded between infections eliminated spontaneously or remaining persistent, although the response was stronger in IMIs eliminated spontaneously, except the concentration of TNF-α, which remained elevated in persistent infections. Lactoferrin (Lf) is a component of the humoral defence of the host and is present at low concentrations in the milk. The concentration of Lf in milk is high during the dry period, in colostrum, and in mastitic milk. The effect of an inherent, high concentration of Lf in the milk on experimental IMI induced with S. chromogenes was studied in transgenic cows that expressed recombinant human Lf in their milk. Human Lf did not prevent S. chromogenes IMI, but the host response was milder in transgenic cows than in normal cows, and the former eliminated infection faster. Biofilm production has been suggested to promote persistence of IMI. Phenotypic biofilm formation and slime producing ability of CNS isolates from bovine mastitis was investigated in vitro. One-third of mastitis isolates produced biofilm. Slime production was less frequent for isolates of the most common mastitis causing species S. chromogenes and S. simulans compared with S. epidermidis. No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was associated with persistent infections, but only 8% of isolates produced slime.
Resumo:
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures
Resumo:
The a.c. conductivity of CaF2 samples containing a fine dispersion of CaO particles has been measured in the temperature range 630 to 1100 K. The conductivity of the dispersed solid electrolyte is two orders of magnitude higher than that for pure polycrystalline CaF2 in the middle of the temperature range. Transport measurements on pure single crystals of CaF2 and polycrystalline samples, with and without CaO dispersion, using Fe+FeO and pure Fe as electrodes, clearly indicate that fluorine ions are the only migrating ionic species with a transport number of almost unity, contrary to the suggestion of Chou and Rapp [1, 2]. The enhanced conductivity of the dispersed solid electrolyte probably arises from two effects. A small solubility of oxygen in CaF2 results in an increase in the fluorine vacancy concentration and conductivity. Adsorption of fluorine ions on the surface of the dispersed particles of CaO results in a space charge region around each particle with enhanced conductivity. Measurements on a galvanic cell incorporating CaF2 as the solid electrolyte and oxide electrodes show that the e.m.f. is a function of the activity of CaO at the electrode/electrolyte interface. The response to an oxygen potential gradient is, therefore, through an exchange reaction, which establishes an equivalent fluorine potential at the electrode/electrolyte interface.
Resumo:
Palladium complex-catalyzed carbonylation of arylsulfonyl chlorides in the presence of metal alkoxides M(OR)n (M=B, Al, and Ti) gives the corresponding esters along with diaryl disulfides. With metal carboxylates M(OCOR)n (M=Na, K, Ca, Mg, and Zn), the free acids are also obtained
Resumo:
Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.
Resumo:
This study is focused on the development and evaluation of ion mobility instrumentation with various atmospheric pressure ionization techniques and includes the following work. First, a high-resolution drift tube ion mobility spectrometer (IMS), coupled with a commercial triple quadrupole mass spectrometer (MS), was developed. This drift tube IMS is compatible with the front-end of commercial Sciex mass spectrometers (e.g., Sciex API-300, 365, and 3000) and also allows easy (only minor modifications are needed) installation between the original atmospheric pressure ion source and the triple quadrupole mass spectrometer. Performance haracteristics (e.g.,resolving power, detection limit, transmission efficiency of ions) of this IMS-MS instrument were evaluated. Development of the IMS-MS instrument also led to a study where a proposal was made that tetraalkylammonium ions can be used as chemical standards for ESI-IMS. Second, the same drift tube design was also used to build a standalone ion mobility spectrometer equipped with a Faraday plate detector. For this highresolution (resolving power about 100 shown) IMS device, a multi-ion source platform was built, which allows the use of a range of atmospheric pressure ionization methods, such as: corona discharge chemical ionization (CD-APCI), atmospheric pressure photoionization (APPI), and radioactive atmospheric pressure chemical ionization (R-APCI). The multi-ion source platform provides easy switching between ionization methods and both positive and negative ionization modes can be used. Third, a simple desorpion/ionization on silicon (DIOS) ion source set-up for use with the developed IMS and IMS-MS instruments was built and its operation demonstrated. Fourth, a prototype of a commercial aspiration-type ion mobility spectrometer was mounted in front of a commercial triple quadrupole mass spectrometer. The set-up, which is simple, easy to install, and requires no major modifications to the MS, provides the possibility of gathering fundamental information about aspiration mobility spectrometry.
Resumo:
Tutkimuksen tavoitteena oli ottaa käyttöön tandemmassaspektrometrinen (MS/MS) menetelmä, jolla voidaan analysoida polysakkarideista purkautuneiden oligosakkaridien rakenteita. Tavoitteena oli, että menetelmällä voidaan määrittää glykosidisten sidosten eri asemat monosakkaridirakenteiltaan samanlaisista neutraaleista lineaarisista oligosakkarideista. Kirjallisuustutkimuksessa tarkasteltiin oligosakkaridien rakenteiden määrittämiseen käytettyjä MS/MS-menetelmiä ja oligosakkaridien pilkkoutumisreaktioita MS/MS-analyysissa. Kirjallisuuden perusteella MS/MS-analyysissa oligosakkaridien pilkkoutuminen voi tapahtua joko glykosidisen sidoksen katkeamisella tai monosakkaridirenkaan halkeamisella. Monosakkaridirenkaan pilkkoutumisesta muodostuvia tuoteioneja voidaan käyttää glykosidisen sidoksen aseman määrittämiseen. Kokeellisessa tutkimuksessa selvitettiin aluksi monosakkaridirakenteiltaan isomeerisilla disakkaridimalliaineilla glykosidisen sidoksen sijainnin vaikutus disakkaridin pilkkoutumiseen MS/MS-analyysissa. Tämän jälkeen pyrittiin löytämään tunnetuista tri- ja tetrasakkaridimalliaineista näitä eri sidoksille tyypillisiä tuoteionien jakaumia. Tunnettujen tri- ja tetrasakkaridien pilkkoutuminen yhdenmukaisesti disakkaridien pilkkoutumisen kanssa antaisi mahdollisuuden pitkäketjuisempien oligosakkaridien glykosidisten sidosten tunnistamiseen sovelletulla MS/MS-menetelmällä. MS/MS-analyysit tehtiin ioniloukkumassadetektorilaitteistolla käyttäen sähkösumutusionisaatiota (ESI). Oligosakkaridit määritettiin positiivisella ionisaatiolla litium- ja natriumaddukti-ioneina ja negatiivisella ionisaatiolla kloridiaddukti-ioneina. Vertaamalla tri- ja tetrasakkarideista MS/MS-analyyseissa muodostuneita tuoteioneja disakkarideista muodostuneisiin tuoteioneihin, voitiin sekä positiivisella että negatiivisella ionisaatiolla määrittää oligosakkaridin pelkistävän pään sidoksen asema. Negatiivisella ionisaatiolla tri- ja tetrasakkarideista muodostuneista tuoteioneista voitiin määrittää myös muiden kuin pelkistävän pään sidosten asemia. Positiivisella ionisaatiolla muiden sidosten määrittäminen ei ollut mahdollista, koska rengasfragmentti-ioneja muodostui pääosin oligosakkaridin pelkistävästä päästä. Glykosidisen sidoksen katkeamisesta muodostuneet tuoteionit analysoitiin edelleen MS3-analyysilla. MS3-analyysissa muodostuneista tuoteioneista ei voitu tulkita sidosten asemia, koska lähtöionit koostuivat sekä terminaalisen että pelkistävän pään isomeerisista ioneista.
Resumo:
Tutkimuksen tarkoituksena oli selvittää desorptio/fotoionisaatio ilmanpaineessa tekniikan (engl. desorption atmospheric pressure photoionization, DAPPI) soveltuvuutta rikosteknisen laboratorion näytteiden analysointiin. DAPPI on nopea massaspektrometrinen ionisaatiotekniikka, jolla voidaan tutkia yhdisteitä suoraan erilaisilta pinnoilta. DAPPI:ssa käytetään lämmitettyä mikrosirua, joka suihkuttaa höyrystynyttä liuotin- ja kaasuvirtausta kohti näytettä. Näytteen pinnan komponentit desorboituvat lämmön vaikutuksesta, jonka jälkeen ionisoituminen tapahtuu VUV-lampun emittoimien fotonien avulla.DAPPI:lla tutkittiin takavarikoituja huumausaineita, anabolisia steroideja ja räjähdysaineita sekä niiden jäämiä erilaisilta pinnoilta. Lisäksi kartoitettiin DAPPI:n mahdollisuuksia ja rajoituksia erilaisille näytematriiseille ilman näytteiden esikäsittelyä. Takavarikoitujen huumausaineiden tutkimuksessa analysoitiin erilaisia tabletteja, jauheita, kasvirouheita, huumekasveja (khat, oopium, kannabis) ja sieniä. Anabolisia steroideja tunnistettiin tableteista sekä ampulleista, jotka sisälsivät öljymäistä nestettä. Jauheet ripoteltiin kaksipuoliselle teipille ja analysoitiin siltä. Muut näytteet analysoitiin sellaisenaan ilman minkäänlaista esikäsittelyä, paitsi nestemäisten näytteiden kohdalla näyte pipetoitiin talouspaperille, joka analysoitiin DAPPI:lla. DAPPI osoittautui nopeaksi ja yksinkertaiseksi menetelmäksi takavarikoitujen huumausaineiden ja steroidien analysoimisessa. Se soveltui hyvin rikoslaboratorion erityyppisten näytteiden rutiiniseulontaan ja helpotti erityisesti huumekasvien ja öljymäisten steroidiliuosten tutkimusta. Massaspektrometrin likaantuminen pystyttiin ehkäisemään säätämällä näytteen etäisyyttä sen suuaukosta. Likaantumista ei havaittu huolimatta näytteiden korkeista konsentraatioista ja useita kuukausia jatkuneista mittauksista. Räjähdysaineiden tutkimuksessa keskityttiin seitsemän eri räjähdysaineen DAPPI-MS-menetelmän kehitykseen; trinitrotolueeni (TNT), nitroglykoli (NK), nitroglyseriini (NG), pentriitti (PETN), heksogeeni (RDX), oktogeeni (HMX) ja pikriinihappoä Nämä orgaaniset räjähteet ovat nitraattiyhdisteitä, jotka voidaan jakaa rakenteen puolesta nitroamiineihin (RDX ja HMX), nitroaromaatteihin (TNT ja pikriinihappo) sekä nitraattiestereihin (PETN, NG ja NK). Menetelmäkehityksessä räjähdysainelaimennokset pipetoitiin polymetyylimetakrylaatin (PMMA) päälle ja analysoitiin siitä. DAPPI:lla tutkittiin myäs autenttisia räjähdysainejäämiä erilaisista matriiseista. DAPPI:lla optimoitiin jokaiselle räjähdysaineelle sopiva menetelmä ja yhdisteet saatiin näkymään puhdasaineina. Räjähdysainejäämien analysoiminen erilaisista rikospaikkamateriaaleista osoittautui haastavammaksi tehtäväksi, koska matriisit aiheuttivat itsessään korkean taustan spektriin, josta räjähdysaineiden piikit eivät useimmiten erottuneet tarpeeksi. Muut desorptioionisaatiotekniikat saattavat soveltua paremmin haastavien räjähdysainejäämien havaitsemiseksi.
Resumo:
The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.
Resumo:
We point out possibilities for exotic physics in barium bismuthates, from a detailed study of the negative-U, extended-Hubbard model proposed for these systems. We emphasize the different consequences of electronic and phononic mechanisms for negative U. We show that, for an electronic mechanism, the semiconducting phases must be unique, with their transport properties dominated by charge ± 2e Cooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport.
Resumo:
At physiological pH, a PAMAM dendrimer is positively charged and can effectively bind negatively charged DNA. Currently, there has been great interest in understanding this complexation reaction both for fundamental (as a model for complex biological reactions) as well as for practical (as a gene delivery material and probe for sensing DNA sequence) reasons. Here, we have studied the complexation between double-stranded DNA (dsDNA) and various generations of PAMAM dendrimers (G3-05) through atomistic molecular dynamics simulations in the presence of water and ions. We report the compaction of DNA on a nanosecond time scale. This is remarkable, given the fact that such a short DNA duplex with a length close to 13 nm is otherwise thought to be a rigid rod. Using several nanoseconds long MD simulations, we have observed various binding modes of dsDNA and dendrimers for various generations of PAMAM dendrimers at varying charge ratios, and it confirms some of the binding modes proposed earlier. The binding is driven by the electrostatic interaction, and the larger the dendrimer charge, the stronger the binding affinity. As DNA wraps/binds to the dendrimer, counterions originally condensed onto DNA (Na+) and the dendrimer (Cl-) get released. We calculate the entropy of counterions and show that there is gain in entropy due to counterion release during the complexation. MD simulations demonstrate that, when the charge ratio is greater than 1 (as in the case of the G5 dendrimer), the optimal wrapping of DNA is observed. Calculated binding energies of the complexation follow the trend G5 > 04 > 03, in accordance with the experimental data. For a lower-generation dendrimer, such as G3, and, to some extent, for G4 also, we see considerable deformation in the dendrimer structure due to their flexible nature. We have also calculated the various helicoidal parameters of DNA to study the effect of dendrimer binding on the structure of DNA. The B form of the DNA is well preserved in the complex, as is evident from various helical parameters, justifying the use of the PAMAM dendrimer as a suitable delivery vehicle.
Resumo:
The reactions of As-chlorocyclotriphosphazane [EtNPCl], with phenols or trifluoroethanol yield the respective aryloxy- or trifluoroethoxy-containingX 3-cyclotriphosphazanes [EtNP(OR)]3 (R = C6H4Br-4 (2),C 6H5 (3C,6 H3-Mez-3,5 (4), C6H3Mez-2,6 (5), CH2CF3 (6)) as their cis-transisomericmixtures. The products have beencharacterized by IRand NMRspectroscopy. Thecrystalstructuresofboth thecis (2a) and trans(2b) isomer_softhep-bromophenoxy derivative have been determined by X-ray diffraction. Crystal data for 2a: triclinic, P1, a = 9.872(4) A, b = 13.438(6) A, c = 13.548(8) A, CY = 117.02(5)', 0 = 96.00(6)', y = 105.38(4)O, Z = 2, final R = 0.080. Crystal data for 2b: monoclinic, P21/n, a = 12.721(6) A, b = 13.468(7) A, c = 17.882(5) A, /3 = 101.62(3)O, Z = 4, final R = 0.066. The cis isomer exhibits a chair-triaxial conformation and the trans isomer a boat-triaxial conformation. Conformational preferences of X3-cyclotriphosphazanes have been probed by both MNDO and ab initio calculations on model systems [HNPXIp (X = H, F). In addition to vicinal lone pair repulsions, negative hyperconjugative interactions involving the nitrogen lone pairs and adjacent P-X Q* orbitals are found to be important (especially when X is an electronegative substituent) in determining the conformational preferences of X3-cyclotriphosphazanes. The calculations also show that the axial - equatorial conversion at phosphorus has a large activation barrier in these systems