976 resultados para carnegie Hall
Resumo:
Ayuntamiento de Fene, La Coruña
Resumo:
The Hall Effect Thruster (HET) is a type of satellite electric propulsion device initially developed in the 1960’s independently by USA and the former USSR. The development continued in the shadow during the 1970’s in the Soviet Union to reach a mature status from the technological point of view in the 1980’s. In the 1990’s the advanced state of this Russian technology became known in western countries, which rapidly restarted the analysis and development of modern Hall thrusters. Currently, there are several companies in USA, Russia and Europe manufacturing Hall thrusters for operational use. The main applications of these thrusters are low-thrust propulsion of interplanetary probes, orbital raising of satellites and stationkeeping of geostationary satellites. However, despite the well proven in-flight experience, the physics of the Hall Thruster are not completely understood yet. Over the last two decades large efforts have been dedicated to the understanding of the physics of Hall Effect thrusters. However, the so-called anomalous diffusion, short name for an excessive electron conductivity along the thruster, is not yet fully understood as it cannot be explained with classical collisional theories. One commonly accepted explanation is the existence of azimuthal oscillations with correlated plasma density and electric field fluctuations. In fact, there is experimental evidence of the presence of an azimuthal oscillation in the low frequency range (a few kHz). This oscillation, usually called spoke, was first detected empirically by Janes and Lowder in the 1960s. More recently several experiments have shown the existence of this type of oscillation in various modern Hall thrusters. Given the frequency range, it is likely that the ionization is the cause of the spoke oscillation, like for the breathing mode oscillation. In the high frequency range (a few MHz), electron-drift azimuthal oscillations have been detected in recent experiments, in line with the oscillations measured by Esipchuk and Tilinin in the 1970’s. Even though these low and high frequency azimuthal oscillations have been known for quite some time already, the physics behind them are not yet clear and their possible relation with the anomalous diffusion process remains an unknown. This work aims at analysing from a theoretical point of view and via computer simulations the possible relation between the azimuthal oscillations and the anomalous electron transport in HET. In order to achieve this main objective, two approaches are considered: local linear stability analyses and global linear stability analyses. The use of local linear stability analyses shall allow identifying the dominant terms in the promotion of the oscillations. However, these analyses do not take into account properly the axial variation of the plasma properties along the thruster. On the other hand, global linear stability analyses do account for these axial variations and shall allow determining how the azimuthal oscillations are promoted and their possible relation with the electron transport.
Resumo:
Hay un ejemplar encuadernado con: Bandos divertidísimos contra los borrachos y borrachas, y gente aficionada al vino (NP849.91/3087).
Resumo:
When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer.
Resumo:
no. 143 (1911)
Resumo:
no. 198 (1914)
Resumo:
no. 135 (1910)
Resumo:
no. 224 (1916)
Resumo:
no. 273 (1921)
Resumo:
no. 140 (1911)
Resumo:
https://bluetigercommons.lincolnu.edu/postcards/1006/thumbnail.jpg
Resumo:
The two-dimensional electron gas formed at the semiconductor heterointerface is a theater for many intriguing plays of physics. The fractional quantum Hall effect (FQHE), which occurs in strong magnetic fields and low temperatures, is the most fascinating of them. The concept of composite fermions and bosons not only is beautiful by itself but also has proved highly successful in providing pictorial interpretation of the phenomena associated with the FQHE.
Resumo:
We present a mechanism for persistent charge current. Quantum spin Hall insulators hold dissipationless spin currents in their edges so that, for a given spin orientation, a net charge current flows which is exactly compensated by the counterflow of the opposite spin. Here we show that ferromagnetic order in the edge upgrades the spin currents into persistent charge currents without applied fields. For that matter, we study the Hubbard model including Haldane-Kane-Mele spin-orbit coupling in a zigzag ribbon and consider the case of graphene. We find three electronic phases with magnetic edges that carry currents reaching 0.4 nA, comparable to persistent currents in metallic rings, for the small spin-orbit coupling in graphene. One of the phases is a valley half metal.
Resumo:
Two-dimensional insulators with time-reversal symmetry can have two topologically different phases, the quantum spin Hall and the normal phase. The former is revealed by the existence of conducting edge states that are topologically protected. Here we show that the reaction to impurity, in bulk, is radically different in the two phases and can be used as a marker for the topological phase. Within the context of the Kane-Mele model for graphene, we find that strictly normalizable in-gap impurity states only occur in the quantum spin Hall phase and carry a dissipationless current whose chirality is determined by the spin and pseudospin of the residing electron.