894 resultados para biomass productivity
Resumo:
A recent assessment of 4400 postgraduate courses in Brazil by CAPES (a federal government agency dedicated to the improvement of the quality of and research at the postgraduate level) stimulated a large amount of manifestations in the press, scientific journals and scientific congresses. This gigantic effort to classify 16,400 scientific journals in order to provide indicators for assessment proved to be puzzling and methodologically erroneous in terms of gauging the institutions from a metric point of view. A simple algorithm is proposed here to weigh the scientometric indicators that should be considered in the assessment of a scientific institution. I conclude here that the simple gauge of the total number of citations accounts for both the productivity of scientists and the impact of articles. The effort spent in this exercise is relatively small, and the sources of information are fully accessible. As an exercise to estimate the value of the methodology, 12 institutions of physics (10 from Brazil, one from the USA and one from Italy) have been evaluated.
Resumo:
Spirulina platensis is a photoautotrophic mesophilic cyanobacterium. Its main sources of nutrients are nitrate, urea, and ammonium salts. Spirulina cultivation requires temperature, light intensity, and nutrient content control. This microalgae has been studied and used commercially due to its therapeutic and antioxidant potential. In addition, several studies have reported its ability to use CO2, its immune activity, and use as an adjuvant nutritive factor in the treatment of obesity. The objective of this study is the production of biomass of S. platensis using different rates of stirring, nitrogen source, amount of micronutrients, and luminosity. A 2(4) experimental design with the following factors: stirring (120 and 140 RPM), amount of nitrogen (1.5 and 2.5 g/L), amount of micronutrients (0,25 and 0,75 mL/L) (11 and 15 W), and luminosity was used. Fermentation was performed in a 500 mL conical flask with 250 mL of culture medium and 10% inoculum in an incubator with controlled stirring and luminosity. Fermentation was monitored using a spectrophotometer (560 nm), and each fermentation lasted 15 days. Of the parameters studied, luminosity is the one with the highest significance, followed by the amount of nitrogen and the interaction between stirring and micronutrients. Maximum production of biomass for 15 days was 2.70 g/L under the following conditions: luminosity15W; stirring, 120 RPM; source of nitrogen, 1.5 g/L; and micronutrients, 0.75 mL/L.
Resumo:
In biotechnological processes, the culture media components are responsible for high costs and exert a strong influence on the cyanobacteria behavior. The objective of this study was to evaluate the Arthrospira platensis growth potential for biomass production under different cultivation conditions using an experimental design. Three factors that are important for cyanobacteria growth were evaluated: sodium bicarbonate (9 to 18 g/l), sodium nitrate (1.25 to 2.5 g/l), and irradiance (20 to 120 µmol photons/m2.s–1). The results showed that the concentration of NaNO3 in the A. platensis medium can be reduced, resulting in increased concentrations of biomass produced. There was a higher biomass production due to the increase in the concentration of NaHCO3 and irradiance, mainly when these two factors varied tending towards the highest values studied. The results demonstrate the potential to produce Arthrospira platensis with lower costs and effluent generation without affecting cultivation performance.
Resumo:
The objective of the research was to identify knowledge conversion states in consultancy sales and delivery processes for the company’s one business unit, to know where to store certain types of information and knowledge, and to create best practices for the company’s knowledge management activities in the selected business processes. The used research methodology was action research. The current business processes were analyzed by interviewing people involved in them. The results were documented and catego- rized, and based on them the target states of the processes were developed. Knowledge man- agement activities were integrated to the business processes. The main findings of the research were that roles and responsibilities in the processes were not clear to people, information systems did not fully support individuals and time was wasted searching for information and knowledge. There were also many variations of how the processes actually realized, which affected the overall quality of the process. The conclusions of the research were that knowledge management activities should be high- lighted in businesses where knowledge workers are the main assets of the company. Knowledge management practices can be supported by company culture, leadership and in- formation systems. However, one main factor is each individual’s willingness to share knowledge. By integrating knowledge management activities to business processes and hav- ing information systems supporting knowledge management, individual productivity can be improved.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.
Resumo:
The aim of this paper is to analyze the relation between economic growth and labor market dynamics in Brazil between 1981 and 2009, making a comparison with the United States. Among the findings, one can mention that economic growth in Brazil has been related to a massive incorporation of labor force in labor intensive activities, whereas, in the United States, to a substantial improvement of labor productivity in high-technology activities. Despite the favorable economic context in the 2000s, huge inequalities between these countries have widened since the structure of the Brazilian labor market remained with few or no changes.
Resumo:
How does fire affect the plant and animal community of the boreal forest? This study attempted to examine the changes in plant composition and productivity, and small mammal demography brought about by fire in the northern boreal environment at Chick Lake, N.W.T. (65053fN, 128°14,W). Two 5*6 ha plots measuring 375m x 150m were selected for study during the summers of 1973 and 197^. One had been unburned for 120 years, the other was part of a fire which burned in the spring of 1969. Grids of 15m x 15m were established in each plot and meter square quadrats taken at each of the 250 grid intersections in order to determine plant composition and density. Aerial primary production was assessed by clipping and drying 80 samples of terminal new production for each species under investigation. Small mammal populations were sampled by placing a Sherman live trap at each grid intersection for ten days in every month. The two plots were similar in plant species composition which suggested that most regrowth in the burned area was from rootstocks which survived the fire. The plant data were submitted to a cluster analysis that revealed nine separate species associations, six of which occured in the burned area and eight of which occured in the control. These were subsequently treated as habitats for purposes of comparison with small mammal distributions. The burned area showed a greater productivity in flowers and fruits although total productivity in the control area was higher due to a large contribution from the non-vascular component. Maximum aerial productivity as dry wieght was measured at 157.1 g/m and 207.8 g/m for the burn and control respectively. Microtus pennsylvanicus and Clethrionomys rutilus were the two most common small mammals encountered; Microtus xanthognathus, Synaptomys borealis, and Phenacomys intermedius also occured in the area. Populations of M. pennsylvanicus and C. rutilus were high during the summer of 1973; however, M. pennsylvanicus was rare on the control but abundant on the burn, while C. rutilus was rare on the burn but abundant in the control. During the summer of 197^ populations declined, with the result that few voles of any species were caught in the burn while equal numbers of the two species were caught in the control. During the summer of 1973 M. pennsylvanicus showed a positive association to the most productive habitat type in the burn which was avoided by C. rutilus. In the control £• rutilus showed a similar positive association to the most productive habitat type which was avoided by M. pennsylvanicus. In all cases for the high population year of 1973# the two species never overlapped in habitat preference. When populations declined in 197^f "both species showed a strong association for the most productive habitat in the control. This would suggest that during a high population year, an abundant species can exclude competitors from a chosen habitat, but that this dominance decreases as population levels decrease. It is possible that M. pennsylvanicus is a more efficient competitor in a recently burned environment, while C. rutilus assumes this role once non-vascular regrowth becomes extensive.
Resumo:
The article focuses on stress factors, which include: Genetic Background, Individual Differences, Past Experiences. The conclusion of the article states "reducing handling stress of animals will improve their weight gain, reproductive performance, and ability to resist disease".
Resumo:
réalisé en cotutelle avec la Faculté des Sciences de Tunis, Université Tunis El Manar.
Resumo:
The use of industrial wastes rich in mineral nutrients and carbon sources to increase the final microalgal biomass and lipid yield at a low cost is an important strategy to make algal biofuel technology viable. Using strains from the microalgal collection of the Université de Montréal, this report shows for the first time that microalgal strains can be grown on xylose, the major carbon source found in wastewater streams from pulp and paper industries, with an increase in growth rate of 2.8 fold in comparison to photoautotrophic growth, reaching up to µ=1.1/day. On glycerol, growth rates reached as high as µ=1.52/day. Lipid productivity increased up to 370% on glycerol and 180% on xylose for the strain LB1H10, showing the suitability of this strain for further development for biofuels production through mixotrophic cultivation.