995 resultados para between Baffin and Bylot Island
Resumo:
Band alignment of resistive random access memory (RRAM) switching material Ta2O5 and different metal electrode materials was examined using high-resolution X-ray photoelectron spectroscopy. Schottky and hole barrier heights at the interface between electrode and Ta2O 5 were obtained, where the electrodes consist of materials with low to high work function (Φ m, v a c from 4.06 to 5.93 eV). Effective metal work functions were extracted to study the Fermi level pinning effect and to discuss the dominant conduction mechanism. An accurate band alignment between electrodes and Ta2O5 is obtained and can be used for RRAM electrode engineering and conduction mechanism study. © 2013 American Institute of Physics.
Resumo:
Parallels between the dynamic response of flexible bridges under the action of wind and under the forces induced by crowds allow each field to inform the other.Wind-induced behaviour has been traditionally classified into categories such as flutter, galloping, vortex-induced vibration and buffeting. However, computational advances such as the vortex particle method have led to a more general picture where effects may occur simultaneously and interact, such that the simple semantic demarcations break down. Similarly, the modelling of individual pedestrians has progressed the understanding of human–structure interaction, particularly for large amplitude lateral oscillations under crowd loading. In this paper, guided by the interaction of flutter and vortexinduced vibration in wind engineering, a framework is presented, which allows various human–structure interaction effects to coexist and interact, thereby providing a possible synthesis of previously disparate experimental and theoretical results.
Resumo:
The aim of this study was to explore how the remote control of appliances/lights (active energy management system) affected household well-being, compared to in-home displays (passive energy management system). A six-week exploratory study was conducted with 14 participants divided into the following three groups: active; passive; and no equipment. The effect on well-being was measured through thematic analysis of two semi-structured interviews for each participant, administered at the start and end of the study. The well-being themes were based on existing measures of Satisfaction and Affect. The energy demand for each participant was also measured for two weeks without intervention, and then compared after four weeks with either the passive or active energy management systems. These measurements were used to complement the well-being analysis. Overall, the measure of Affect increased in the passive group but Satisfaction decreased; however, all three measures on average decreased in the active group. The measured energy demand also highlighted a disconnect between well-being and domestic energy consumption. The results point to a need for further investigation in this field; otherwise, there is a risk that nationally implemented energy management solutions may negatively affect our happiness and well-being. © 2013 Elsevier Ltd.
Resumo:
The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.
Resumo:
The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.
Resumo:
Comparative analyses of differentially expressed genes between somatic cell nuclear transfer (SCNT) embryos and zygote-developing (ZD) embryos are important for understanding the molecular mechanism underlying the reprogramming processes. Herein, we used the suppression subtractive hybridization approach and from more than 2900 clones identified 96 differentially expressed genes between the SCNT and ZD embryos at the dome stage in zebrafish. We report the first database of differentially expressed genes in zebrafish SCNT embryos. Collectively, our findings demonstrate that zebrafish SCNT embryos undergo significant reprogramming processes during the dome stage. However, most differentially expressed genes are down-regulated in SCNT embryos, indicating failure of reprogramming. Based on Ensembl description and Gene Ontology Consortium annotation, the problems of reprogramming at the dome stage may occur during nuclear remodeling, translation initiation, and regulation of the cell cycle. The importance of regulation from recipient oocytes in cloning should not be underestimated in zebrafish.
Resumo:
Strongly reducing organic substances (SROS) and iron oxides exist widely in soils and sediments and have been implicated in many soil and sediment processes. In the present work, the sorptive interaction between goethite and SROS derived from anaerobic decomposition of green manures was investigated by differential pulse voltammetry (DPV). Both green manures, Astragaltus sinicus (Astragalus) and Vicia varia (Vicia) were chosen to be anaerobically decomposed by the mixed microorganisms isolated from paddy soils for 30 d to prepare different SROS. Goethite used in experiments was synthesized in laboratory. The anaerobic incubation solutions from green manures at different incubation time were arranged to react with goethite, in which SROS concentration and Fe(II) species were analyzed. The anaerobic decomposition of Astragalus generally produced SROS more in amount but weaker in reducibility than that of Vicia in the same incubation time. The available SROS from Astragalus that could interact with goethite was 0.69 +/- 0.04, 0.84 +/- 0.04 and 1.09 +/- 0.03 cmol kg(-1) as incubated for 10, 15 and 30 d, respectively, for Vicia, it was 0.12 +/- 0.03, 0.46 +/- 0.02 and 0.70 +/- 0.02 cmol kg(-1). One of the fates of SROS as they interacted with goethite was oxidation. The amounts of oxidizable SROS from Astragalus decreased over increasing incubation time from 0.51 +/- 0.05 cmol kg(-1) at day 10 to 0.39 +/- 0.04 cmol kg(-1) at day 30, but for Vicia, it increased with the highest reaching to 0.58 +/- 0.04 cmol kg(-1) at day 30. Another fate of these substances was sorption by goethite. The SROS from Astragalus were sorbed more readily than those from Vicia, and closely depended upon the incubation time, whereas for those from Vicia, the corresponding values were remarkably less and apparently unchangeable with incubation time. The extent of goethite dissolution induced by the anaerobic solution from Vicia was greater than that from Astragalus, showing its higher reactivity. (c) 2008 Published by Elsevier Ltd.
Resumo:
In order to gain insight into the bloom sustainment of colonial Microcystis aeruginosa Katz., physiological characterizations were undertaken in this study. Compared with unicellular Microcystis, colonial Microcystis phenotypes exhibited a higher maximum photosynthetic rate (Pm), a higher maximum electron transfer rate (ETRmax), higher phycocyanin content, and a higher affinity for inorganic carbon (K-0.5 DIC <= 8.4 +/- 0.7 mu M) during the growth period monitored in this study. This suggests that photosynthetic efficiency is a dominant physiological adaptation found in colonial Microcystis, thus promoting bloom sustainment. In addition, the high content of soluble and total carbohydrates in colonial Microcystis suggests that this phenotype may possess a higher ability to tolerate enhanced stress conditions when compared to unicellular (noncolonial) phenotypes. Therefore, high photosynthetic activities and high tolerance abilities may explain the bloom sustainment of colonial Microcystis in eutrophic lakes.
Resumo:
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July-September in 2003-2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river-connected lakes (SL) was nearly 33 times that in permanently river-connected lakes (RL), and more than six times that in city lakes (NC) and non-urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 mu g L-1) was detected in Dianshan Lake. 3. MC-RR and MC-LR were the primary toxin variants in our data. MC-RR, MC-YR and MC-LR were significantly correlated with Ch1 a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus UP) and NH4+ with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO3- + NO2- were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochernical factors.
Resumo:
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.
Resumo:
Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials.
Resumo:
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.
Resumo:
Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. © 2014 The Authors.