911 resultados para automatic indexing
Resumo:
La calificación automática de tareas de programación es un tema importante dentro del campo de la innovación educativa que se enfoca en mejorar las habilidades de programación de los estudiantes y en optimizar el tiempo que el profesorado dedica a ello. Uno de los principales problemas vigentes está relacionado con la diversidad de criterios para calificar las tareas de programación. El presente trabajo propone e implementa una arquitectura, basada en el concepto de orquestación de servicios, para soportar varios procesos de calificación automática de tareas de programación. Esto es obtenido a través de las características de modularidad, extensibilidad y flexibilidad que la arquitectura provee al proceso de calificación. La arquitectura define como pieza clave un elemento llamado Grading-submodule, el mismo que provee un servicio de evaluación del código fuente considerando un criterio de calificación. La implementación se ha llevado a cabo sobre la herramienta Virtual Programming Lab; y los resultados demuestran la factibilidad de realización, y la utilidad tanto para el profesorado como para los estudiantes.
Resumo:
En todo el mundo se ha observado un crecimiento exponencial en la incidencia de enfermedades crónicas como la hipertensión y enfermedades cardiovasculares y respiratorias, así como la diabetes mellitus, que causa un número de muertes cada vez mayor en todo el mundo (Beaglehole et al., 2008). En concreto, la prevalencia de diabetes mellitus (DM) está aumentando de manera considerable en todas las edades y representa un serio problema de salud mundial. La diabetes fue la responsable directa de 1,5 millones de muertes en 2012 y 89 millones de años de vida ajustados por discapacidad (AVAD) (OMS, 2014). Uno de los principales dilemas que suelen asociarse a la gestión de EC es la adherencia de los pacientes a los tratamientos, que representa un aspecto multifactorial que necesita asistencia en lo relativo a: educación, autogestión, interacción entre los pacientes y cuidadores y compromiso de los pacientes. Medir la adherencia del tratamiento es complicado y, aunque se ha hablado ampliamente de ello, aún no hay soluciones “de oro” (Reviews, 2002). El compromiso de los pacientes, a través de la participación, colaboración, negociación y a veces del compromiso firme, aumentan las oportunidades para una terapia óptima en la que los pacientes se responsabilizan de su parte en la ecuación de adherencia. Comprometer e involucrar a los pacientes diabéticos en las decisiones de su tratamiento, junto con expertos profesionales, puede ayudar a favorecer un enfoque centrado en el paciente hacia la atención a la diabetes (Martin et al., 2005). La motivación y atribución de poder de los pacientes son quizás los dos factores interventores más relevantes que afectan directamente a la autogestión de la atención a la diabetes. Se ha demostrado que estos dos factores desempeñan un papel fundamental en la adherencia a la prescripción, así como en el fomento exitoso de un estilo de vida sana y otros cambios de conducta (Heneghan et al., 2013). Un plan de educación personalizada es indispensable para proporcionarle al paciente las herramientas adecuadas que necesita para la autogestión efectiva de la enfermedad (El-Gayar et al. 2013). La comunicación efectiva es fundamental para proporcionar una atención centrada en el paciente puesto que influye en las conductas y actitudes hacia un problema de salud ((Frampton et al. 2008). En este sentido, la interactividad, la frecuencia, la temporalización y la adaptación de los mensajes de texto pueden promover la adherencia a un régimen de medicación. Como consecuencia, adaptar los mensajes de texto a los pacientes puede resultar ser una manera de hacer que las sugerencias y la información sean más relevantes y efectivas (Nundy et al. 2013). En este contexto, las tecnologías móviles en el ámbito de la salud (mHealth) están desempeñando un papel importante al conectar con pacientes para mejorar la adherencia a medicamentos recetados (Krishna et al., 2009). La adaptación de los mensajes de texto específicos de diabetes sigue siendo un área de oportunidad para mejorar la adherencia a la medicación y ofrecer motivación a adultos con diabetes. Sin embargo, se necesita más investigación para entender totalmente su eficacia. Los consejos de texto personalizados han demostrado causar un impacto positivo en la atribución de poder a los pacientes, su autogestión y su adherencia a la prescripción (Gatwood et al., 2014). mHealth se puede utilizar para ofrecer programas de asistencia de autogestión a los pacientes con diabetes y, al mismo tiempo, superar las dificultades técnicas y financieras que supone el tratamiento de la diabetes (Free at al., 2013). El objetivo principal de este trabajo de investigación es demostrar que un marco tecnológico basado en las teorías de cambios de conducta, aplicado al campo de la mHealth, permite una mejora de la adherencia al tratamiento en pacientes diabéticos. Como método de definición de una solución tecnológica, se han adoptado un conjunto de diferentes técnicas de conducta validadas denominado marco de compromiso de retroacción conductual (EBF, por sus siglas en inglés) para formular los mensajes, guiar el contenido y evaluar los resultados. Los estudios incorporan elementos del modelo transteórico (TTM, por sus siglas en inglés), la teoría de la fijación de objetivos (GST, por sus siglas en inglés) y los principios de comunicación sanitaria persuasiva y eficaz. Como concepto general, el modelo TTM ayuda a los pacientes a progresar a su próxima fase de conducta a través de mensajes de texto motivados específicos y permite que el médico identifique la fase actual y adapte sus estrategias individualmente. Además, se adoptan las directrices del TTM para fijar objetivos personalizados a un nivel apropiado a la fase de cambio del paciente. La GST encierra normas que van a ponerse en práctica para promover la intervención educativa y objetivos de pérdida de peso. Finalmente, los principios de comunicación sanitaria persuasiva y eficaz aplicados a la aparición de los mensajes se han puesto en marcha para aumentar la efectividad. El EBF tiene como objetivo ayudar a los pacientes a mejorar su adherencia a la prescripción y encaminarlos a una mejora general en la autogestión de la diabetes mediante mensajes de texto personalizados denominados mensajes de retroacción automáticos (AFM, por sus siglas en inglés). Después de una primera revisión del perfil, consistente en identificar características significativas del paciente basadas en las necesidades de tratamiento, actitudes y conductas de atención sanitaria, el sistema elige los AFM personalizados, los aprueba el médico y al final se transfieren a la interfaz del paciente. Durante el tratamiento, el usuario recopila los datos en dispositivos de monitorización de pacientes (PMD, por sus siglas en inglés) de una serie de dispositivos médicos y registros manuales. Los registros consisten en la toma de medicación, dieta y actividad física y tareas de aprendizaje y control de la medida del metabolismo. El compromiso general del paciente se comprueba al estimar el uso del sistema y la adherencia del tratamiento y el estado de los objetivos del paciente a corto y largo plazo. El módulo de análisis conductual, que consiste en una serie de reglas y ecuaciones, calcula la conducta del paciente. Tras lograr el análisis conductual, el módulo de gestión de AFM actualiza la lista de AFM y la configuración de los envíos. Las actualizaciones incluyen el número, el tipo y la frecuencia de mensajes. Los AFM los revisa periódicamente el médico que también participa en el perfeccionamiento del tratamiento, adaptado a la fase transteórica actual. Los AFM se segmentan en distintas categorías y niveles y los pacientes pueden ajustar la entrega del mensaje de acuerdo con sus necesidades personales. El EBF se ha puesto en marcha integrado dentro del sistema METABO, diseñado para facilitar al paciente diabético que controle sus condiciones relevantes de una manera menos intrusiva. El dispositivo del paciente se vincula en una plataforma móvil, mientras que una interfaz de panel médico permite que los profesionales controlen la evolución del tratamiento. Herramientas específicas posibilitan que los profesionales comprueben la adherencia del paciente y actualicen la gestión de envíos de AFM. El EBF fue probado en un proyecto piloto controlado de manera aleatoria. El principal objetivo era examinar la viabilidad y aceptación del sistema. Los objetivos secundarios eran también la evaluación de la eficacia del sistema en lo referente a la mejora de la adherencia, el control glucémico y la calidad de vida. Se reclutaron participantes de cuatro centros clínicos distintos en Europa. La evaluación del punto de referencia incluía datos demográficos, estado de la diabetes, información del perfil, conocimiento de la diabetes en general, uso de las plataformas TIC, opinión y experiencia con dispositivos electrónicos y adopción de buenas prácticas con la diabetes. La aceptación y eficacia de los criterios de evaluación se aplicaron para valorar el funcionamiento del marco tecnológico. El principal objetivo era la valoración de la eficacia del sistema en lo referente a la mejora de la adherencia. En las pruebas participaron 54 pacientes. 26 fueron asignados al grupo de intervención y equipados con tecnología móvil donde estaba instalado el EBF: 14 pacientes tenían T1DM y 12 tenían T2DM. El grupo de control estaba compuesto por 25 pa cientes que fueron tratados con atención estándar, sin el empleo del EBF. La intervención profesional tanto de los grupos de control como de intervención corrió a cargo de 24 cuidadores, entre los que incluían diabetólogos, nutricionistas y enfermeras. Para evaluar la aceptabilidad del sistema y analizar la satisfacción de los usuarios, a través de LimeSurvey, se creó una encuesta multilingüe tanto para los pacientes como para los profesionales. Los resultados también se recopilaron de los archivos de registro generados en los PMD, el panel médico profesional y las entradas de la base de datos. Los mensajes enviados hacia y desde el EBF y los archivos de registro del sistema y los servicios de comunicación se grabaron durante las cinco semanas del estudio. Se entregaron un total de 2795 mensajes, lo que supuso una media de 107,50 mensajes por paciente. Como se muestra, los mensajes disminuyen con el tiempo, indicando una mejora global de la adherencia al plan de tratamiento. Como se esperaba, los pacientes con T1DM recibieron más consejos a corto plazo, en relación a su estado. Del mismo modo, al ser el centro de T2DM en cambios de estilo de vida sostenible a largo plazo, los pacientes con T2DM recibieron más consejos de recomendación, en cuanto a dietas y actividad física. También se ha llevado a cabo una comparación de la adherencia e índices de uso para pacientes con T1DM y T2DM, entre la primera y la segunda mitad de la prueba. Se han observado resultados favorables para el uso. En lo relativo a la adherencia, los resultados denotaron una mejora general en cada dimensión del plan de tratamiento, como la nutrición y las mediciones de inserción de glucosa en la sangre. Se han llevado a cabo más estudios acerca del cambio a nivel educativo antes y después de la prueba, medidos tanto para grupos de control como de intervención. Los resultados indicaron que el grupo de intervención había mejorado su nivel de conocimientos mientras que el grupo de control mostró una leve disminución. El análisis de correlación entre el nivel de adherencia y las AFM ha mostrado una mejora en la adherencia de uso para los pacientes que recibieron los mensajes de tipo alertas, y unos resultados no significativos aunque positivos relacionados con la adherencia tanto al tratamiento que al uso correlacionado con los recordatorios. Por otra parte, los AFM parecían ayudar a los pacientes que no tomaban suficientemente en serio su tratamiento en el principio y que sí estaban dispuestos a responder a los mensajes recibidos. Aun así, los pacientes que recibieron demasiadas advertencias, comenzaron a considerar el envío de mensajes un poco estresante. El trabajo de investigación llevado a cabo al desarrollar este proyecto ofrece respuestas a las cuatro hipótesis de investigación que fueron la motivación para el trabajo. • Hipótesis 1 : es posible definir una serie de criterios para medir la adherencia en pacientes diabéticos. • Hipótesis 2: es posible diseñar un marco tecnológico basado en los criterios y teorías de cambio de conducta mencionados con anterioridad para hacer que los pacientes diabéticos se comprometan a controlar su enfermedad y adherirse a planes de atención. • Hipótesis 3: es posible poner en marcha el marco tecnológico en el sector de la salud móvil. • Hipótesis 4: es posible utilizar el marco tecnológico como solución de salud móvil en un contexto real y tener efectos positivos en lo referente a indicadores de control de diabetes. La verificación de cada hipótesis permite ofrecer respuesta a la hipótesis principal: La hipótesis principal es: es posible mejorar la adherencia diabética a través de un marco tecnológico mHealth basado en teorías de cambio de conducta. El trabajo llevado a cabo para responder estas preguntas se explica en este trabajo de investigación. El marco fue desarrollado y puesto en práctica en el Proyecto METABO. METABO es un Proyecto I+D, cofinanciado por la Comisión Europea (METABO 2008) que integra infraestructura móvil para ayudar al control, gestión y tratamiento de los pacientes con diabetes mellitus de tipo 1 (T1DM) y los que padecen diabetes mellitus de tipo 2 (T2DM). ABSTRACT Worldwide there is an exponential growth in the incidence of Chronic Diseases (CDs), such as: hypertension, cardiovascular and respiratory diseases, as well as diabetes mellitus, leading to rising numbers of deaths worldwide (Beaglehole et al. 2008). In particular, the prevalence of diabetes mellitus (DM) is largely increasing among all ages and constitutes a major worldwide health problem. Diabetes was directly responsible for 1,5 million deaths in 2012 and 89 million Disability-adjusted life year (DALYs) (WHO 2014). One of the key dilemmas often associated to CD management is the patients’ adherence to treatments, representing a multi-factorial aspect that requires support in terms of: education, self-management, interaction between patients and caregivers, and patients’ engagement. Measuring adherence is complex and, even if widely discussed, there are still no “gold” standards ((Giardini et al. 2015), (Costa et al. 2015). Patient’s engagement, through participation, collaboration, negotiation, and sometimes compromise, enhance opportunities for optimal therapy in which patients take responsibility for their part of the adherence equation. Engaging and involving diabetic patients in treatment decisions, along with professional expertise, can help foster a patient-centered approach to diabetes care (Martin et al. 2005). Patients’ motivation and empowerment are perhaps the two most relevant intervening factors that directly affect self-management of diabetes care. It has been demonstrated that these two factors play an essential role in prescription adherence, as well as for the successful encouragement of a healthy life-style and other behavioural changes (Heneghan et al. 2013). A personalised education plan is indispensable in order to provide the patient with the appropriate tools needed for the effective self-management of the disease (El-Gayar et al. 2013). Effective communication is at the core of providing patient-centred care since it influences behaviours and attitudes towards a health problem (Frampton et al. 2008). In this regard, interactivity, frequency, timing, and tailoring of text messages may promote adherence to a medication regimen. As a consequence, tailoring text messages to patients can constitute a way of making suggestions and information more relevant and effective (Nundy et al. 2013). In this context, mobile health technologies (mHealth) are playing significant roles in improving adherence to prescribed medications (Krishna et al. 2009). The tailoring of diabetes-specific text messages remains an area of opportunity to improve medication adherence and provide motivation to adults with diabetes but further research is needed to fully understand their effectiveness. Personalized text advices have proven to produce a positive impact on patients’ empowerment, self-management, and adherence to prescriptions (Gatwood et al. 2014). mHealth can be used for offering self-management support programs to diabetes patients and at the same time surmounting the technical and financial difficulties involved in diabetes treatment (Free et al. 2013). The main objective of this research work is to demonstrate that a technological framework, based on behavioural change theories, applied to mHealth domain, allows improving adherence treatment in diabetic patients. The framework, named Engagement Behavioural Feedback Framework (EBF), is built on top of validated behavioural techniques to frame messages, guide the definition of contents and assess outcomes: elements from the Transtheoretical Model (TTM), the Goal-Setting Theory (GST), Effective Health Communication (EHC) guidelines and Principles of Persuasive Technology (PPT) were incorporated. The TTM helps patients to progress to a next behavioural stage, through specific motivated text messages, and allow clinician’s identifying the current stage and tailor its strategies individually. Moreover, TTM guidelines are adopted to set customised goals at a level appropriate to the patient’s stage of change. The GST was used to build rules to be applied for enhancing educational intervention and weight loss objectives. Finally, the EHC guidelines and the PPT were applied to increase the effectiveness of messages. The EBF aims to support patients on improving their prescription adherence and persuade them towards a general improvement in diabetes self-management, by means of personalised text messages, named Automatic Feedback Messages (AFM). After a first profile screening, consisting in identifying meaningful patient characteristics based on treatment needs, attitudes and health care behaviours, customised AFMs are selected by the system, approved by the professional, and finally transferred into the patient interface. During the treatment, the user collects the data into a Patient Monitoring Device (PMD) from a set of medical devices and from manual inputs. Inputs consist in medication intake, diet and physical activity, metabolic measurement monitoring and learning tasks. Patient general engagement is checked by estimating the usage of the system and the adherence of treatment and patient goals status in the short and the long term period. The Behavioural Analysis Module, consisting in a set of rules and equations, calculates the patient’s behaviour. After behavioural analysis is accomplished, the AFM library and the dispatch setting are updated by the AFM Manager module. Updates include the number, the type and the frequency of messages. The AFMs are periodically supervised by the professional who also participates to the refinement of the treatment, adapted to the current transtheoretical stage. The AFMs are segmented in different categories and levels and patients can adjust message delivery in accordance with their personal needs. The EBF was integrated to the METABO system, designed to facilitate diabetic patients in managing their disease in a less intrusive approach. Patient device corresponds in a mobile platform, while a medical panel interface allows professionals to monitoring the treatment evolution. Specific tools allow professional to check patient adherence and to update the AFMs dispatch management. The EBF was tested in a randomised controlled pilot. The main objective was to examine the feasibility and acceptance of the system. Secondary objectives were also the assessment of the effectiveness of system in terms of adherence improvement, glycaemic control, and quality of life. Participants were recruited from four different clinical centres in Europe. The baseline assessment included demographics, diabetes status, profile information, knowledge about diabetes in general, usage of ICT platforms, opinion and experience about electronic devices and adoption of good practices with diabetes. Acceptance and the effectiveness evaluation criteria were applied to evaluate the performance of the technological framework. The main objective was the assessment of the effectiveness of system in terms of adherence improvement. Fifty-four patients participated on the trials. Twenty-six patients were assigned in the intervention group and equipped with mobile where the EBF was installed: 14 patients were T1DM and 12 were T2DM. The control group was composed of 25 patients that were treated through a standard care, without the usage of the EBF. Professional’s intervention for both intervention and control groups was carried out by 24 care providers, including endocrinologists, nutritionists, and nurses. In order to evaluate the system acceptability and analyse the users’ satisfaction, an online multi-language survey, using LimeSurvey, was produced for both patients and professionals. Results were also collected from the log-files generated in the PMDs, the professional medical panel and the entries of the data base. The messages sent to and from the EBF and the log-files of the system and communication services were recorded over 5 weeks of the study. A total of 2795 messages were submitted, representing an average of 107,50 messages per patient. As demonstrated, messages decrease over time indicating an overall improvement of the care plan’s adherence. As expected, T1DM patients were more loaded with short-term advices, in accordance with their condition. Similarly, being the focus of T2DM on long-term sustainable lifestyle changes, T2DM received more reminders advices, as for diet and physical activity. Favourable outcomes were observed for treatment and usage adherences of the intervention group: for both the adherence indices, results denoted a general improvement on each care plan’s dimension, such as on nutrition and blood glucose input measurements. Further studies were conducted on the change on educational level before and after the trial, measured for both control and intervention groups. The outcomes indicated the intervention group has improved its level of knowledge, while the control group denoted a low decrease. The correlation analysis between the level of adherences and the AFMs showed an improvement in usage adherence for patients who received warnings message, while non-significantly yet even positive indicators related to both treatment and usage adherence correlated with the Reminders. Moreover, the AFMs seemed to help those patients who did not take their treatment seriously enough in the beginning and who were willing to respond to the messages they received. Even though, patients who received too many Warnings, started to consider the message dispatch to be a bit stressful. The research work carried out in developing this research work provides responses to the four research hypothesis that were the motivation for the work: •Hypothesis 1: It is possible to define a set of criteria to measure adherence in diabetic patients. •Hypothesis 2: It is possible to design a technological framework, based on the aforementioned criteria and behavioural change theories, to engage diabetic patients in managing their disease and adhere to care plans. •Hypothesis 3: It is possible to implement the technological framework in the mobile health domain. •Hypothesis 4: It is possible to use the technological framework as a mobile health solution in a real context and have positive effects in terms of diabetes management indicators. The verification of each hypothesis allowed us to provide a response to the main hypothesis: The Main Hypothesis is: It is possible to improve diabetic adherence through a mHealth technological framework based on behavioural change theories. The work carried out to answer these questions is explained in this research work. The framework was developed and applied in the METABO project. METABO is an R&D project, co-funded by the European Commission (METABO 2008) that integrates mobile infrastructure for supporting the monitoring, management, and treatment of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients.
Resumo:
The proliferation of video games and other applications of computer graphics in everyday life demands a much easier way to create animatable virtual human characters. Traditionally, this has been the job of highly skilled artists and animators that painstakingly model, rig and animate their avatars, and usually have to tune them for each application and transmission/rendering platform. The emergence of virtual/mixed reality environments also calls for practical and costeffective ways to produce custom models of actual people. The purpose of the present dissertation is bringing 3D human scanning closer to the average user. For this, two different techniques are presented, one passive and one active. The first one is a fully automatic system for generating statically multi-textured avatars of real people captured with several standard cameras. Our system uses a state-of-the-art shape from silhouette technique to retrieve the shape of subject. However, to deal with the lack of detail that is common in the facial region for these kind of techniques, which do not handle concavities correctly, our system proposes an approach to improve the quality of this region. This face enhancement technique uses a generic facial model which is transformed according to the specific facial features of the subject. Moreover, this system features a novel technique for generating view-independent texture atlases computed from the original images. This static multi-texturing system yields a seamless texture atlas calculated by combining the color information from several photos. We suppress the color seams due to image misalignments and irregular lighting conditions that multi-texturing approaches typically suffer from, while minimizing the blurring effect introduced by color blending techniques. The second technique features a system to retrieve a fully animatable 3D model of a human using a commercial depth sensor. Differently to other approaches in the current state of the art, our system does not require the user to be completely still through the scanning process, and neither the depth sensor is moved around the subject to cover all its surface. Instead, the depth sensor remains static and the skeleton tracking information is used to compensate the user’s movements during the scanning stage. RESUMEN La popularización de videojuegos y otras aplicaciones de los gráficos por ordenador en el día a día requiere una manera más sencilla de crear modelos virtuales humanos animables. Tradicionalmente, estos modelos han sido creados por artistas profesionales que cuidadosamente los modelan y animan, y que tienen que adaptar específicamente para cada aplicación y plataforma de transmisión o visualización. La aparición de los entornos de realidad virtual/mixta aumenta incluso más la demanda de técnicas prácticas y baratas para producir modelos 3D representando personas reales. El objetivo de esta tesis es acercar el escaneo de humanos en 3D al usuario medio. Para ello, se presentan dos técnicas diferentes, una pasiva y una activa. La primera es un sistema automático para generar avatares multi-texturizados de personas reales mediante una serie de cámaras comunes. Nuestro sistema usa técnicas del estado del arte basadas en shape from silhouette para extraer la forma del sujeto a escanear. Sin embargo, este tipo de técnicas no gestiona las concavidades correctamente, por lo que nuestro sistema propone una manera de incrementar la calidad en una región del modelo que se ve especialmente afectada: la cara. Esta técnica de mejora facial usa un modelo 3D genérico de una cara y lo modifica según los rasgos faciales específicos del sujeto. Además, el sistema incluye una novedosa técnica para generar un atlas de textura a partir de las imágenes capturadas. Este sistema de multi-texturización consigue un atlas de textura sin transiciones abruptas de color gracias a su manera de mezclar la información de color de varias imágenes sobre cada triángulo. Todas las costuras y discontinuidades de color debidas a las condiciones de iluminación irregulares son eliminadas, minimizando el efecto de desenfoque de la interpolación que normalmente introducen este tipo de métodos. La segunda técnica presenta un sistema para conseguir un modelo humano 3D completamente animable utilizando un sensor de profundidad. A diferencia de otros métodos del estado de arte, nuestro sistema no requiere que el usuario esté completamente quieto durante el proceso de escaneado, ni mover el sensor alrededor del sujeto para cubrir toda su superficie. Por el contrario, el sensor se mantiene estático y el esqueleto virtual de la persona, que se va siguiendo durante el proceso, se utiliza para compensar sus movimientos durante el escaneado.
Resumo:
Automatic segmentation using univariate and multivariate techniques provides more objective and efficient segmentations of the river systems (Alber & Piégay, 2011) and can be complementary to the expert criteria traditionally used (Brenden et al., 2008) INTEREST: A powerful tool to objectively segment the continuity of rivers, which is required for diagnosing problems associated to human impacts OBJECTIVE: To evaluate the potentiality of univariate and multivariate methods in the assessment of river adjustments produced by flow regulation
Resumo:
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families.
Resumo:
Classical Guitar Music in Printed Collections is a new, open-access, online index to the contents of published score collections for classical guitar. Its interlinked, alphabetized lists allow one to find a composition by title or composer, to discover what score collections include that piece, to see what other works are included in each collection identified, and to locate a copy in a library collection. Accuracy of identification is guaranteed by incipit images of each work. The article discusses how this index differs from existing bibliographies of the classical guitar literature, its structure and design, and technical details of its publication.
Resumo:
In this paper we present an automatic system for the extraction of syntactic semantic patterns applied to the development of multilingual processing tools. In order to achieve optimum methods for the automatic treatment of more than one language, we propose the use of syntactic semantic patterns. These patterns are formed by a verbal head and the main arguments, and they are aligned among languages. In this paper we present an automatic system for the extraction and alignment of syntactic semantic patterns from two manually annotated corpora, and evaluate the main linguistic problems that we must deal with in the alignment process.
Resumo:
This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Resumo:
En este artículo se investigan técnicas automáticas para encontrar un modelo óptimo de características en el caso de un analizador de dependencias basado en transiciones. Mostramos un estudio comparativo entre algoritmos de búsqueda, sistemas de validación y reglas de decisión demostrando al mismo tiempo que usando nuestros métodos es posible conseguir modelos complejos que proporcionan mejores resultados que los modelos que siguen configuraciones por defecto.
Resumo:
This paper describes a module for the prediction of emotions in text chats in Spanish, oriented to its use in specific-domain text-to-speech systems. A general overview of the system is given, and the results of some evaluations carried out with two corpora of real chat messages are described. These results seem to indicate that this system offers a performance similar to other systems described in the literature, for a more complex task than other systems (identification of emotions and emotional intensity in the chat domain).
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.
Resumo:
In recent years, Twitter has become one of the most important microblogging services of the Web 2.0. Among the possible uses it allows, it can be employed for communicating and broadcasting information in real time. The goal of this research is to analyze the task of automatic tweet generation from a text summarization perspective in the context of the journalism genre. To achieve this, different state-of-the-art summarizers are selected and employed for producing multi-lingual tweets in two languages (English and Spanish). A wide experimental framework is proposed, comprising the creation of a new corpus, the generation of the automatic tweets, and their assessment through a quantitative and a qualitative evaluation, where informativeness, indicativeness and interest are key criteria that should be ensured in the proposed context. From the results obtained, it was observed that although the original tweets were considered as model tweets with respect to their informativeness, they were not among the most interesting ones from a human viewpoint. Therefore, relying only on these tweets may not be the ideal way to communicate news through Twitter, especially if a more personalized and catchy way of reporting news wants to be performed. In contrast, we showed that recent text summarization techniques may be more appropriate, reflecting a balance between indicativeness and interest, even if their content was different from the tweets delivered by the news providers.
Resumo:
The free hardware platforms have become very important in engineering education in recent years. Among these platforms, Arduino highlights, characterized by its versatility, popularity and low price. This paper describes the implementation of four laboratory experiments for Automatic Control and Robotics courses at the University of Alicante, which have been developed based on Arduino and other existing equipment. Results were evaluated taking into account the views of students, concluding that the proposed experiments have been attractive to them, and they have acquired the knowledge about hardware configuration and programming that was intended.