969 resultados para attori, concorrenza, COOP, Akka, benchmark
Resumo:
We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.
Resumo:
The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed uid-structure interaction benchmark which describes the self-induced elastic deformation of a beam attached to a cylinder in laminar channel ow. The optimized ow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system in two dimensions. Special emphasis is given to the analysis of the simulation package, which is of high accuracy and is the core of application. The design process identifies the best combination of ow features for optimal system behavior and the most important objectives. In addition, the presented methodology has the potential to run in parallel, which will significantly speed-up the elapsed time. Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-Ojective Tabu search (MOTS2). Copyright © 2013 Tech Science Press.
Resumo:
The present study aims at accounting for swirling mean flow effects on rotor trailing-edge noise. Indeed, the mean flow in between the rotor and the stator of the fan or of a compressor stage is highly swirling. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces and of Goldstein's acoustic analogy in a circular duct with uniform mean flow to a swirling mean flow in an annular duct is introduced. It is first applied to tonal noise. In most cases, the swirl modifies the pressure distribution downstream of the fan. In several configurations, when the swirl is rather close to a solid body swirl, it is often sufficient to apply a simple Doppler effect correction when predicting the duct modes in uniform mean flow in order to predict accurately the noise radiated with swirl. However, in other realistic configurations, the swirling mean-flow effect cannot be addressed using this simple Doppler effect correction. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling and sheared mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has an effect. In some cases the a simple Doppler effect may address it, but, in other realistic configurations our acoustic analogy with swirl is needed. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Reliable means of predicting ingestion in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper, analysis is to be presented that results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities. Extensive use is made of CFD modelling techniques to understand the aerodynamic behaviour of a turbine stator well cavity, focusing on the interaction of cooling air supply with the main annulus gas. The objective of the study has been to benchmark a number of CFD codes and numerical techniques covering RANS and URANS calculations with different turbulence models in order to assess the suitability of the standard settings used in the industry for calculating the mechanics of the flow travelling between cavities in a turbine through the main gas path. The modelling methods employed have been compared making use of experimental data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The limitations of the numerical methods in calculating the interaction of the cooling flow egress and the main stream gas, and subsequent ingestion into downstream cavities in the engine (i.e. re-ingestion), have been exposed. This has been done without losing sight of the validation of the CFD for its use for predicting heat transfer, which was the main objective of the partners of the MAGPI Work- Package 1 consortium. Copyright © 2012 by ASME.
Resumo:
The present study aims at investigating the effect of a swirling mean flow and a lined annular duct on rotor trailing-edge noise. The objectives are to investigate these effects on the eigenvalues and a tailored Green's function on one hand and on the realistic case of the fan trailing-edge noise on the other hand. Indeed, the mean flow in between the rotor and the stator of the fan is highly swirling. Moreover, interstage liners are used to reduce the noise produced by the fan stage. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces, of Goldstein's acoustic analogy in a hardwall circular duct with uniform mean flow and of Rienstra & Tester's Green's function in an annular lined duct with uniform mean flow to a swirling mean flow in an annular duct with liner is introduced. First, the eigenvalues and the Green's function are investigated showing a strong effect of the swirl and of the liner. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct with lined walls and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has a strong effect on the absolute noise level. The overall liner insertion loss is little changed by the swirl in the studied cases.
Resumo:
This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
Resumo:
This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).
Resumo:
传统集群网络(cluster area network,简称cLAN)的评测模型主要考虑了延迟、带宽、路由、拥塞、网络拓扑结构等因素.但这些因素是否足以描述实际应用程序在集群上的通信行为,或者对其在集群系统上的性能给出一个很好的预测呢?当对NAS Parallel Benchmark(2.4版本)在集群系统深腾1800(DeepComp 1800)上进行大量测试时发现,集群网络的通信性能可以被一种特殊的通信模式(LU模式)所严重影响.更深入的研究表明,这个影响LU模式的因素是独立于前面所述的如延迟、带宽、路由、拥塞、网络拓扑结构等因素的.因此有必要对集群网络的评测模型重新进行审视,并增加一个新的性能评测因子以反映这个新发现的现象.从研究结果来看,这个重新审视也将对集群系统上的并行算法设计以及实际大规模科学计算的应用程序性能的优化提供一些新的思路.
Resumo:
对3个国产万亿次机群系统进行了NPB性能测试分析,重点研究大规模并行处理时(处理器数目达到上千个)的性能特点和趋势.分析了不同的处理器、互连网络等系统配置对NPB性能的影响,发现NPB的8个程序在3个万亿次机器上的性能特点和表现并不一致,表明国产高性能机群在设计上正在逐渐走出同质化的趋势,向多样化发展.进一步分析表明,目前NPB程序的可扩展性可以达到几百个处理器,但尚不能达到上千个处理器,NPB程序能发挥出的系统峰值的百分比仍然徘徊在10%左右,机群系统的并行可扩展性和应用程序对机器运算潜能的利用还需要进一步提高.对于处理器数目达到上千个的万亿次机群系统来说,对集合通信和细粒度通信能力的支持亟需提高.
Resumo:
优化的模型观察方法是图形学中重要的研究方向,广泛应用在基于图像的建模、场景漫游、镜头控制、体数据绘制和医学数据可视化等方面。近年来,随着三维模型扫描及建模技术的不断发展,图形学需要处理的模型数量、种类及规模都有很大增长,这给模型观察带来了新的困难,但同时也是机遇和挑战。 目前的模型观察方法在视点质量评价算子、综合性和Benchmark等方面仍然存在一些问题。已有的基于模型几何信息的视点质量评价算子都只考虑了模型显著特征数量,而没有考虑模型显著特征种类分布情况。这样可能造成选择的视点只包种类单一的显著特征,不能表达模型整体的显著特征类型分布。当前模型观察的方法一般只针对模型整体或者模型单一的局部选择一个或多个视点进行观察,这些方法对较复杂三维模型的观察效率不够高。目前对模型观察结果的评价还停留在感性阶段等等。针对以上问题,本文提出了新的视点质量评价算子、新的模型观察方法和Benchmark。具体描述如下: 1. 提出了一种基于模型几何信息的视点选择方法,能够获得与基于模型语义信息的方法类似的结果,但无需比较复杂的模型语义分析。与已有的方法追求在一个视点内包含更多模型显著特征不同,新方法基于一种视点相关曲率,在视平面上度量模型特征,使得优化视点内包含的模型显著特征种类更多。由于视点所包含的内容与模型可见特征的种类有很大关联性,我们的方法生成的视点包含的模型显著特征种类分布与模型整体显著特征的种类分布更相似,大多数时候都与人们观察模型时所喜欢的Three-Quarter View相近。实验结果表明了本方法的效率和有效性。 2. 提出了一种模型观察方法,可自动地生成观察序列,实现对模型由全局到局部的优化观察。基于层次骨架树的建立,该方法将模型的全局特征、局部特征和细节特征进行层次化的有序组织。由此,可生成不同层次特征的观察视点,且有效表达它们之间的关联性,以较好地符合人脑对模型的认知方式,减少人工交互选择视点的盲目性,提高认知效率。实验表明,相比于人工交互的视点选择,我们的观察方法节约一半以上的时间,并显著地降低认知识错误率。 3. 设计并实现了一个视点选择Benchmark,对视点选择结果进行量化分析。首先,我们采集了30个测试者对45个模型的视点选择结果,借以确立真人视点选择的基准视点;接着,以基准视点为参考,分析了真人视点选择的一致性和稳定性;最后,应用五个(共三类)代表性的算法进行视点选择,并比较其结果与基准视点的差别,得到各视点选择算法的质量及时间效率。实验表明,真人视点选择整体具有较好的一致性和稳定性,但对不同特征类型模型,一致性的表现有较大差异;已有视点选择算法对45个测试模型的结果整体差异不大,各类视点选择算法对不同特征类型模型结果互有优劣。 关键词: 模型观察,视点选择,层次骨架,模型结构分析,Benchmark
Resumo:
系统的高可靠性是研究航空航天领域的一个重要指标. 由于太空环境的特殊性, 辐射和高能粒子会造成计算机系统的出现瞬时性错误, 这种错误被称作软错误, 它对航空航天器件造成了很大的影响, 严重降低系统的可靠性. 检测和防护这种软错误是航空航天系统中的重要研究方向之一. 软错误的检测和防护包括硬件防护与检错, 软硬件混合检错以及纯软件检错等. 随着商用器件的广泛使用, 与之相配合的各种软错误软件检错方法开始得到深入的研究, 在各种软件检错方法中, 控制流检测是抵御单粒子事件的有效手段之一.目前的主流方法是采用嵌入式签名技术, 但是该技术引入的检测指令过多, 导致程序效率低下. 本文从总结控制流检测技术的共同点出发, 分析该技术导致效率低下的原因:由于基本块定义的约束导致程序中基本块过多, 进而在代码注入过程中引入过多的判断及跳转指令, 导致程序效率低下. 本文针对这种情况, 提出了一种基于源代码分析的基本块规约的方法. 该方法通过修改基本块定义的约束, 使在新的基本块定义下每个基本块能够容纳更多的指令, 减少检测指令的注入, 提高效率;并且在新的基本块定义下, 原来的控制流检错方法仍可以不加修改的直接应用于新的基本块定义上. 该方法能在不修改benchmark源代码以及控制流检测方法的基础上, 选择合适的约束量重新划分基本块, 减少引入的检测指令. 本文中使用该方法以ECCA, CFCSS和RSCFC三个控制流检错方法作为验证对象, 使用这3种控制流检错方法, 在不同的约束量作用下, 对8个常见算法的benchmark进行了软错误覆盖率测试和效率测试. 多次实验数据表明, 该方法在提高检错算法效率的同时, 能够保持软错误检错的覆盖率基本不变. 在对控制流检错算法进行优化的同时, 本文还完成了相应的控制流分析工具, 基于模拟器的错误注入和代码片段执行时间检测工具等. 有效的对优化算法进行了评估和测试.
Resumo:
First, recent studies on the information preservation (IP) method, a particle approach for low-speed micro-scale gas flows, are reviewed. The IP method was validated for benchmark issues such as Couette, Poiseuille and Rayleigh flows, compared well with measured data for typical internal flows through micro-channels and external flows past micro flat plates, and combined with the Navier-Stokes equations to be a hybrid scheme for subsonic, rarefied gas flows. Second, the focus is moved to the microscopic characteristic of China stock market, particularly the price correlation between stock deals. A very interesting phenomenon was found that showed a reverse transition behaviour between two neighbouring price changes. This behaviour significantly differs from the transition rules for atomic and molecular energy levels, and it is very helpful to understand the essential difference between stock markets and nature.
Resumo:
A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
数值摄动算法将流体动力学效应耦合进NS方程组和对流扩散(CD)方程离散的数学基本格式(MBS),特别是耦合进最简单的一阶迎风和二阶中心格式之中,由此构建成一系列新的摄动格式(PS).构建PS的主要步骤是将MBS中的通量重构为步长的幂级数,利用空间分裂和导出的高阶流体动力学线性关系式,并引入下游不影响上游的对流运动规律,通过消除重构格式修正微分方程的截断误差诸项求出幂级数的待定系数,由此获得非线性PS.PS的项是MBS中对应项与R△x(及λR△x)之简单多项式的乘积,R△x和λ分别是网格Reynolds数和网格CFL数.PS和MBS使用相同结点,简单性彼此相当,但PS精度高,稳定范围大,例如PS包含了许多绝对稳定高阶迎风和中心有限差分(FD)格式和绝对正型有限体积(FV)格式,这些格式对网格Reynolds数的任意值均为不振荡格式.数值摄动算法因此是构建高精度不振荡CFD格式的新方法.PS用于计算不可压缩流,可压缩流,液滴萃取传质,微通道两相流等,均获得良好数值结果或与已有Benchmark解一致的数值结果.已有文献称数值摄动算法为新型高精度方法和高算法,文中也讨论了一些值得进一步研究的课题