992 resultados para asymmetric Diels-Alder reaction
Resumo:
Selostus: Vehnästä ja ohrasta eristettyjen F. avenaceum -punahomekantojen analysointi UP-PCR-menetelmällä
Resumo:
Most optimistic views, based on Optimum Currency Areas (OCA) literature, have concluded that the probability of asymmetric shocks to occur at anational level will tend to diminish in the Economic and Monetary Union (EMU)as a result of the intensification of the integration process during the most recent years. Therefore, since Economic Geography Theories predict a higherspecialisation of regions, it is expected that asymmetric shocks will increase.Previous studies have examined to what extent asymmetric shocks have been relevant in the past using, mainly, static measures of asymmetries such as the correlation coefficients between series of shocks previously calculated from astructural VAR model (Bayoumi and Eichengreen, 1992).In this paper, we study the evolution of manufacturing specific asymmetries in Europe from a dynamic point of view (applying the modelproposed by Haldane and Hall, 1991) in order to obtain new evidence about potential risks of EMU.
Resumo:
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
Most optimistic views, based on Optimum Currency Areas (OCA) literature, have concluded that the probability of asymmetric shocks to occur at anational level will tend to diminish in the Economic and Monetary Union (EMU)as a result of the intensification of the integration process during the most recent years. Therefore, since Economic Geography Theories predict a higherspecialisation of regions, it is expected that asymmetric shocks will increase.Previous studies have examined to what extent asymmetric shocks have been relevant in the past using, mainly, static measures of asymmetries such as the correlation coefficients between series of shocks previously calculated from astructural VAR model (Bayoumi and Eichengreen, 1992).In this paper, we study the evolution of manufacturing specific asymmetries in Europe from a dynamic point of view (applying the modelproposed by Haldane and Hall, 1991) in order to obtain new evidence about potential risks of EMU.
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.
Resumo:
The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy-weighted sum rules. The validity of these sum rules within the self-consistent Green's function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. The study of the sum rules in asymmetric nuclear matter exhibits the isospin dependence of the nucleon-nucleon correlations.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
OBJECTIVE: Positive occipital sharp transient of the sleep (POSTS) are considered a normal variant of non-REM sleep EEG. We describe a small series of patients with asymmetric POSTS and ipsilateral abnormal EEG findings. METHODS: Over a period of 30 weeks, we prospectively observed five consecutive subjects with strictly unilateral POSTS associated with ispilateral electrographic abnormalities. They represent 0.4% of all EEG performed over the same time lapse (5/1130), including inpatients, outpatients and long-term monitoring. RESULTS: Four women and one boy suffering from epileptic seizures (aged 7-76 years old) had unilateral POSTS, occurring only on the right side, during light sleep. They also presented ipsilateral epileptiform abnormalities. CONCLUSION: The fact that POSTS were asymmetric and found only on the same side as the abnormalities raises the question whether these transients should still be considered physiological or could be interpreted at times as markers of underlying electrical abnormalities, pointing to an increased cortical excitability on the more active side. Although larger samples are needed to confirm our preliminary results, this case study questions the interpretation of POSTS as a uniformly normal variant.