924 resultados para aspartate aminotransferase blood level
Resumo:
dThe objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2): non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40 mg/kg b.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The etiology of hormone-induced cancers has been considered to be a combination of genotoxic and epigenetic events. Currently, the Comet assay is widely used for detecting genotoxicity because it is relatively simple, sensitive, and capable of detecting various kinds of DNA damage. The present study evaluates the genotoxic potential of endogenous and synthetic sex hormones, as detected by the Comet assay. Blood cells were obtained from 12 nonsmoking and 12 smoking women with regular menstrual cycles and from 12 nonsmoking women taking low-dose oral contraceptives (OC). Peripheral blood samples were collected at three phases of the menstrual cycle (early follicular, mean follicular, and luteal phases), or at three different moments of oral contraceptive intake. Three blood samples were also collected from 12 healthy nonsmoking men, at the same time as oral contraceptive users. Results showed no significant difference in the level of DNA damage among the three moments of the menstrual cycle either in nonsmoking and smoking women, or between them. No significant difference in DNA damage was also observed among oral contraceptive users, nonusers, and men. Together, these data indicate lack of genotoxicity induced by the physiological level of the female sex hormones and OC as assessed by the alkaline Comet assay. In conclusion, normal fluctuation in endogenous sex hormones and use of low-doses of oral contraceptive should not interfere with Comet assay data when this technique is used for human biomonitoring.
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the effects of 670 nm laser, at different fluences, on the viability of skin flap in rats. One hundred male animals were used. The animals were divided into control group; group treated with 3 J/cm(2); group treated with 6 J/cm(2); group treated with 12 J/cm(2) and group treated with 24 J/cm(2). The skin flap was made on the backs of all animals studied, with a plastic sheet interposed between the flap and the donor site. Laser irradiation was done immediately after the surgery and on days 1, 2, 3 and 4 after surgery. The percentage of necrosis of the flap was calculated at the 7th postoperative day. Additionally, a sample of each flap was collected to enable us to count the blood vessels. Treated animals showed a statistically significant smaller area of necrosis than did the control group. The necrosis in the treated groups was 41.82% (group 2), 36.51% (group 3), 29.45% (group 4) and 20.37% (group 5). We also demonstrated that laser irradiation at 670 nm, at all doses used, had a stimulatory effect on angiogenesis. Our study showed that the 670 nm laser was efficient to increase the viability of the skin flap, at all fluences used, with a tendency of reaching better results at higher doses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tegtbur et al. [23] devised a new method able to estimate the intensity at maximal lactate steady state termed lactate minimum test. According to Billat et al. [7], no studies have yet been published on the affect of training on highest blood lactate concentration that can be maintained over time without continual blood lactate accumulation. Therefore, the aim of the present study was to verify the effect of soccer training on the running speed and the blood lactate concentration (BLC) at the lactate minimum test (Lac(min)). Thirteen Brazilian male professional soccer players, all members of the same team playing at National level, volunteered for this study. Measurements were carried out before (pre) and after (post) eight weeks of soccer training. The Lac(min) test was adapted to the procedures reported by Tegtbur et al. [23]. The running speed at the Lac(min) test was taken when the gradient of the line was zero. Differences in running speed and blood lactate concentration at the Lac(min) test before (pre) and after (post) the training program were evaluated by Student's paired t-test. The training program increased the running speed at the Lac(min) test (14.94 +/- 0.21 vs. 15.44 +/- 0.42* km(.)h(-1)) and the blood lactate concentration (5.11 +/- 2.31 vs. 6.93 +/- 1.33* mmol(.)L(-1)). The enhance in the blood lactate concentration may be explained by an increase in the lactate/H+ transport capacity of human skeletal muscle verified by other authors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim To evaluate ex vivo effectiveness of the three formulations of bleaching materials for intracoronal bleaching of root filled teeth using the walking bleach technique.Methodology Extracted premolar teeth were stained artificially with human blood. After biomechanical preparation, the root canals were filled and a 3-mm thick intermediate base of zinc phosphate cement was placed at the level of the cementoenamel junction. The teeth were divided into four groups (n = 12): C (control, without bleaching material), A1 (sodium perborate + distilled water), A2 (sodium perborate + 10% carbamide peroxide) and A3 (sodium perborate + 35% carbamide peroxide). The bleaching materials were changed at 7 and 14 days. Evaluation of shade was undertaken with aid of the VITA Easyshade (TM) (Delta E*ab) and was performed after tooth staining and at 7, 14 and 21 days after bleaching, based on the CIELAB system. Data were analysed by ANOVA for repeated measurements, Tukey and Dunnett tests (alpha = 0.05).Results The Tukey test revealed that group A1 (10.58 +/- 4.83 Delta E*ab) was statistically different from the others (A2, 19.57 +/- 4.72 Delta E*ab and A3, 17.58 +/- 3.33 Delta E*ab), which were not different from each other. At 7 days: A1 was significantly different from A2; at 14 and 21 days: A2 and A3 were significantly better than A1; the Dunnett test revealed that the control group was different from A1, A2 and A3 at all periods (P < 0.05).Conclusion Sodium perborate associated with both 10% and 35% carbamide peroxide was more effective than when associated with distilled water.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Correspondendo a apenas 2% do peso corpóreo, o cérebro apresenta taxa metabólica superior à maioria dos demais órgãos e sistemas. A maior parte do consumo energético encefálico ocorre no transporte iônico para manutenção do potencial de membrana celular. Praticamente desprovido de estoques, os substratos energéticos para o encéfalo são fornecidos necessariamente pela circulação sanguínea.O suprimento desses substratos sofre também a ação seletiva da barreira hemato-encefálica (BHE). O principal substrato, que é a glicose, tem uma demanda de 150 g/dia (0,7 mM/g/min). A metabolização intracelular parece ser controlada pela fosfofrutoquinase. A manose e os produtos intermediários do metabolismo (frutose 1,6 bifosfato, piruvato, lactato e acetato) podem substituir, em parte, a glicose, quando os níveis sangüíneos desta encontram-se elevados. Quando oxidado, o lactato chega a responder por 21% do consumo cerebral de Ov em situações de isquemia e inflamação infecciosa, o tecido cerebral passa de consumidor a produtor de lactato. Os corpos cetônicos também podem reduzir as necessidades cerebrais de glicose desde que oferecidos em quantidades suficientes ao encéfalo. Entretanto, devem ser considerados como um substrato complementar e nunca alternativo da glicose, pois comprometem a produção cerebral de succinil CoA e GTP. Quanto aos demais substratos, embora apresentem condições metabólicas, não existem demonstrações consistentes de que o cérebro produza energia a partir dos ácidos graxos sistêmicos, mesmo em situações de hipoglicemia. de maneira análoga, etanol e glicerol são considerados apenas a nível de experimentação. A utilização dos aminoácidos é dependente da sua captação, limitada tanto pela baixa concentração sangüínea, como pela seletividade da BHE. A maior captação ocorre para os de cadeia ramificada e destes, a valina. A menor captação é a de aminoácidos sintetizados no cérebro (aspartato,gluconato e alanina). Todos podem ser oxidados a CO, e H(2)0. Entretanto, mesmo com o consumo de glicose reduzido a 50%, a contribuição energética dos aminoácidos não ultrapassa 10%. Para manter o suprimento adequado de glicose e oxigênio, o fluxo sangüíneo cerebral é da ordem de 800 ml/min (15% do débito cardíaco). O consumo de O, pelo cérebro é equivalente a 20% do total consumido pelo corpo. Esses mecanismos, descritos como controladores da utilização de substratos energéticos pelo cérebro, sofrem a influência da idade apenas no período perinatal, com a oxidação do lactato na fase pré-latente e dos corpos cetônicos, no início da amamentação.