905 resultados para artesian wells
Resumo:
In a recent study we demonstrated that a high-hydrostatic-pressure-tolerant isolate of Listeria monocytogenes lacks a codon in the class 3 heat shock regulator gene ctsR. This mutation in the region that encodes four consecutive glycines was directly responsible for the observed piezotolerance, increased stress resistance, and reduced virulence. The aim of the present study was to determine whether mutations in ctsR are frequently associated with piezotolerance in L. monocytogenes. Wild-type cultures of L. monocytogenes were therefore exposed to 350 MPa for 20 min, and the piezotolerance of individual surviving isolates was assessed. This rendered 33 isolates with a stable piezotolerant phenotype from a total of 84 survivors. Stable piezotolerant mutants were estimated to be present in the initial wild-type population at frequencies of >10�5. Subsequent sequencing of the ctsR gene of all stable piezotolerant isolates revealed that two-thirds of the strains (i.e., n � 21) had mutations in this gene. The majority of the mutations (16 of 21 strains) consisted of a triplet deletion in the glycine-encoding region of ctsR, identical to what was found in our previous study. Interestingly, 2 of 21 mutants contained a codon insertion in this repeat region. The remaining three stable piezotolerant strains showed a 19-bp insertion in the glycine repeat region, a 16-bp insertion downstream of the glycine repeat area (both leading to frameshifts and a truncated ctsR), and an in-frame 114-bp deletion encoding a drastically shortened carboxy terminus of CtsR. In four instances it was not possible to generate a PCR product. A piezotolerant phenotype could not be linked to mutations in ctsR in 8 of 33 isolates, indicating that other thus-far-unknown mechanisms also lead to stable piezotolerance. The present study highlights the importance of ctsR in piezotolerance and stress tolerance of L. monocytogenes, and it demonstrates that short-sequence repeat regions contribute significantly to the occurrence of a piezotolerant and stress-tolerant subpopulation within L. monocytogenes cultures, thus playing an important role in survival.
Resumo:
The administration of antisense oligonucleotides (AOs) to skip one or more exons in mutated forms of the DMD gene and so restore the reading frame of the transcript is one of the most promising approaches to treat Duchenne muscular dystrophy (DMD). At present, preclinical studies demonstrating the efficacy and safety of long-term AO administration have not been conducted. Furthermore, it is essential to determine the minimal effective dose and frequency of administration. In this study, two different low doses (LDs) of phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 in the mdx dystrophic mouse were administered for up to 12 months. Mice treated for 50 weeks showed a substantial dose-related amelioration of the pathology, particularly in the diaphragm. Moreover, the generalized physical activity was profoundly enhanced compared to untreated mdx mice showing that widespread, albeit partial, dystrophin expression restores the normal activity in mdx mice. Our results show for the first time that a chronic long-term administration of LDs of unmodified PMO, equivalent to doses in use in DMD boys, is safe, significantly ameliorates the muscular dystrophic phenotype and improves the activity of dystrophin-deficient mice, thus encouraging the further clinical translation of this approach in humans.
Resumo:
Background: The response of plasma lipids to dietary fat manipulation is highly heterogeneous, with some indications that APOE genotype may be important. Objective: The objective was to use a prospective recruitment approach to determine the effect of dietary fat quantity and composition on both lipid and nonlipid cardiovascular disease biomarkers according to APOE genotype. Design: Participants had a mean (±SD) age of 51 ± 9 y and a BMI (in kg/m2) of 26.0 ± 3.8 (n = 44 E3/E3, n = 44 E3/E4) and followed a sequential dietary intervention (the SATgenϵ study) in which they were assigned to a low-fat diet, a high-fat high-SFA (HSF) diet, and the HSF diet with 3.45 g DHA/d (HSF-DHA), each for 8 wk. Fasting blood samples were collected at the end of each intervention arm. Results: An overall diet effect was evident for all cholesterol fractions (P < 0.01), with no significant genotype × diet interactions observed. A genotype × diet interaction (P = 0.033) was evident for plasma triglycerides, with 17% and 30% decreases in APOE3/E3 and APOE3/E4 individuals after the HSF-DHA diet relative to the low-fat diet. A significant genotype × diet interaction (P = 0.009) was also observed for C-reactive protein (CRP), with only significant increases in concentrations after the HSF and HSF-DHA diets relative to the low-fat diet in the APOE3/E4 group (P < 0.015). Conclusions: Relative to the wild-type APOE3/E3 group, our results indicate a greater sensitivity of fasting triglycerides and CRP to dietary fat manipulation in those with an APOE3/E4 genotype (25% population), with no effect of this allelic profile on cholesterol concentrations. The SATgenϵ study was registered at clinicaltrials.gov as NCT01384032.
Resumo:
To gain an understanding of the role of fimbriae and flagella in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces, the extent of adherence of viable wild-type strains to a polystyrene microtitration plate was determined by a crystal violet staining assay, Elaboration of surface antigens by adherent bacteria was assayed by fimbriae- and flagella-specific ELISAs, Wild-type Enteritidis strains adhered well at 37 degrees C and 25 degrees C when grown in microtitration wells in Colonisation Factor Antigen broth, but not in other media tested, At 37 degrees C, adherent bacteria elaborated copious quantities of SEF14 fimbrial antigen, whereas at 25 degrees C adherent bacteria elaborated copious quantities of SEF17 fimbrial antigen. Non-fimbriate and non-flagellate knock-out mutant strains were also assessed in the adherence assay. Mutant strains unable to elaborate SEF14 and SEF17 fimbriae adhered poorly at 37 degrees C and 25 degrees C, respectively, but adherence was not abolished. Non-motile mutant strains showed reduced adherence whilst type-1, PEF and LPF fimbriae appeared not to contribute to adherence in this assay. These data indicate that SEF17 and SEF14 fimbriae mediate bacterial cell aggregation on inanimate surfaces under appropriate growth conditions.
Resumo:
Scope: Our aim was to determine the effects of chronic dietary fat manipulation on postprandial lipaemia according to apolipoprotein (APO)E genotype. Methods and results:Men (mean age 53 (SD 9) years), prospectively recruited for the APOE genotype (n = 12 E3/E3, n = 11 E3/E4), were assigned to a low fat (LF), high fat, high-saturated fat (HSF), and HSF diet with 3.45 g/day docosahexaenoic acid (HSF-DHA), each for an 8-week period in the same order. At the end of each dietary period, a postprandial assessment was performed using a test meal with a macronutrient profile representative of that dietary intervention. A variable postprandial plasma triacylglycerol (TAG) response according to APOE genotype was evident, with a greater sensitivity to the TAG-lowering effects of DHA in APOE4 carriers (p ≤ 0.005). There was a lack of an independent genotype effect on any of the lipid measures. In the groups combined, dietary fat manipulation had a significant impact on lipids in plasma and Svedberg flotation rate (Sf) 60–400 TAG-rich lipoprotein fraction, with lower responses following the HSF-DHA than HSF intervention (p < 0.05). Conclusion: Although a modest impact of APOE genotype was observed on the plasma TAG profile, dietary fat manipulation emerged as a greater modulator of the postprandial lipid response in normolipidaemic men.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
This paper examines the significance of seventeen later Bronze Age wells found during construction at Swalecliffe, in north-east Kent. The unusual depth of the features made for exceptional preservation of wooden structural elements, including steps and revetments, demonstrating rare evidence for woodworking and woodmanship. Extensive biological remains facilitated environmental reconstruction, and a lengthy dendrochronological sequence corroborates the internationally important Flag Fen chronology. Dendrochronological and radiocarbon dates demonstrate around 500 years of seemingly continuous use and replacement of wells. Votive deposits and apparatus used for water collection provide glimpses of small-scale ritual and domestic activities. The highly unusual concentration of wells is compared to contemporary sites regionally and elsewhere.
Resumo:
Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adenoassociated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (ΔAB/R3-R18/ΔCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (ΔAB/R3-R18/ΔCT and ΔR4-R23/ΔCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of ΔAB/R3-R18/ΔCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized ΔAB/ R3-R18/ΔCT. However, codon-optimized microdystrophin ΔR4-R23/ΔCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.
Resumo:
Middle Pleistocene deposits at Hackney, north London comprise a thick unit of organic sands and silts occupying a channel near the confluence of the River Thames in south-eastern England and its left-bank tributary the River Lea. They represent a short time interval, perhaps no more than a few years, within a late Middle Pleistocene interglacial. The organic sediments are overlain by unfossiliferous sands and gravels indicating deposition on the floodplain of a braided river under cool or cold climatic conditions. The fossil plant, insect, mollusc and vertebrate remains from the interglacial deposits all indicate climatic conditions with summers warmer than the present in SE England, and winters with a similar thermal climate. The biostratigraphic evidence suggests that the time period represented by the organic unit is part of MIS 9, although the geochronological evidence for such an age is inconclusive. The palaeontological evidence strongly suggests that this temperate stage was warmer than the succeeding temperate stage MIS 7 or the Holocene, and approaching the Ipswichian (MISs 5e) in its warmth. The multidisciplinary description of the Hackney deposits is one of the first to reconstruct terrestrial conditions in Marine Isotope Stage 9 in Western Europe.
Resumo:
Studies of sulfamide, phosphoric triamide and thiophosphoric triamidebased organocatalysts show that the phosphorus containing systems are effective new hydrogen bonding motifs for the recognition and transport of anions.
Resumo:
The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults
Resumo:
Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgene study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgene participants (n = 52/88), prospectively recruited according to APOE genotype (n = 26 E3/E3 and n = 26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45 g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24 h with either 0.05 or 1 lg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-a and IL-10 production; TNF-a concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P < 0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P < 0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-a and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.
Resumo:
A series of low molecular weight tripodal amide/histidine-containing compounds (1–2) have been synthesised and shown to increase the rate of bis-(p-nitrophenyl) phosphate (BNPP) and soman (GD) breakdown in buffered aqueous solution.
Resumo:
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.