917 resultados para aquatic toxicology
Resumo:
Nonnative aquatic species are invasive worldwide. These species adversely affect natural aquatic ecosystems in a variety of ways and can negatively affect agriculture, recreation and industry. This study addresses identification and control of aquatic plant species of concern in Colorado State Parks. Seventeen species identified as potential threats to the parks and safe, effective chemical control methodologies were determined for each species. A matrix was developed to include the plants, appropriate chemical controls and the type of aquatic habitat where chemical use would be safe and effective. The matrix and recommendations for its use will be provided to the Colorado Division of Parks and Outdoor Recreation to develop a management plan under Section 1204 of the National Invasive Species Act.
Resumo:
Endocrine disruptors are suspected to cause disruption to organisms in aquatic environments. Intersex fish and skewed populations of females outnumbering males have been found where effluents from municipal wastewater treatment plants enter into receiving waters. The science needed to substantiate a link of these suspected pollutants as the cause of problems to human health or the environmental is in its infancy. Empirical research was used to identify suspected endocrine disruptors, their sources, and the difficulties involved in regulating these emerging contaminants. This project examined entities that are addressing endocrine disruption and provides cost-effective recommendations for municipalities to develop policies to mitigate the amount of endocrine disruptors entering into receiving waters and limiting the effects caused by endocrine disruption.
Resumo:
Preventing the introduction of aquatic invasive species (AIS) like zebra and quagga mussels in the U.S. is a high priority. This Capstone demonstrates zebra and quagga mussels are of concern as aquatic invasive species and a volunteer monitoring and intervention program is an effective means for early detection of AIS. This Capstone developed an AIS citizen volunteer lake monitoring program consistent with other programs concerned about AIS prevention and early detection. This Capstone concludes implementing such a voluntary program will help reduce the spread of zebra and quagga mussels and will provide early detection information to appropriate agencies empowered with response actions if species are found.
Resumo:
We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity.