837 resultados para aluminium nitride
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material.A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.
Resumo:
The 2024 and 7050 aluminium alloys used as aircraft components were subjected to laboratory corrosion tests in sodium chloride solution, Light-microscope examinations make it possible to characterise morphological aspects of the localised corrosion. Image analysis was used to determine both depth and width of pits over corroded surfaces. It has been concluded that the annealing could reduce the pit growth in both alloys, by means of grains recrystallization or recovery. The 2024 alloy also tends to present an exfoliation mechanism, mainly throughout non-recrystallized and recrystallized grain boundaries, increasing the width and sustaining the depth of pit cavities during exposition to saline atmosphere. SEM and EDS analysis reveal the morphology and elemental distribution of the corrosion products formed after immersion corrosion test. Some of these products were identified by X-ray diffraction analysis. For 2024, Al(OH)(3), MS(OH)(2) and Cu2O were found. AI(OH)(3) and Cu2O were also found in 7050 samples.
Resumo:
The effects of heat treatment on morphologies and microstructures of Al 2024 and Al 7050 alloys, used as aircraft components, were studied by metallographic techniques. Light microscopy (LM) and quantitative image analysis were used to characterize the precipitate dispersion and morphology for these alloys. The application of the scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) combined techniques for studying these multiphase systems makes it possible to distinguish and quantify the different phases in the surface structure. Xray diffraction also permitted a qualitative comparison of the structures before and after heat treatments.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An automatic Procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atonic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and far data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time mere investigated. A 0.5 mol l(-1) HNO3 solution was elected as electrolyte and 300 A/cm(2) as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-allay samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level.
Resumo:
The influence of aluminium on the development of the microstructure and on the electrical behaviour of the SnO2 center dot Co3O4 center dot Nb2O5 typical varistor system was studied. Two sources of Al were used, alumina (Al2O3) and boehmite (AlO(OH)). The microstructural features were characterised with scanning (SEM) and transmission (TEM) electron microscopies. The different phases present in the studied samples were also studied with XRD, EDS and electron diffraction patterns of selected areas (SAED). Particles containing Sri, Co, Al, and O were unveiled with TEM. Impedance spectroscopy measurements and current density versus electric field characteristics revealed superior electrical properties for samples with AlO(OH). The higher non-linearity (alpha = 19) was achieved with the addition of 0.1% mol of boehmite. The influence of the secondary phases on the electrical properties is also addressed in this work.
Resumo:
Aluminium Hydroxides were precipitated from Aluminium Nitrate and Ammonium Hydroxide, at the temperatures 64 degrees C (hot) and 25 degrees C (cold), under the pH conditions 5, 7 and 9. The samples were characterized by X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA). The hydroxide precipitated at pH 9 and 64 degrees C is built up by pseudoboehmite and a minor share of others apparently amorphous hydroxides. The crystallinity of the hot yielded pseudoboehmite diminishes with the pH. The crystallite size was evaluated as about 40 Angstrom for the best crystallized sample. The cold precipitated product is apparently composed by amorphous or very poorly crystallized hydroxides. Upon heating, the cold precipitated hydroxides, and the low pH and hot precipitated hydroxide, release their structural water before the occurrence, about 430 degrees C, of the transition of the pseudoboehmite to gamma-alumina, and exhibit a shifting (towards low temperature side) and a broadening in the peak of the transition to alpha-alumina, which occurs at 1200 degrees C in the pseudoboehmite pattern. The yielded pseudo-boehmite peptized by HNO3, addition and gelified by evaporation in a critical concentration approximately 0.17 gcm(-3).
Resumo:
Anodic aluminium oxide (AAO) films exhibiting a homogeneous morphology of parallel pores perpendicular to the surface were prepared in a two-step anodization process and filled with copper by electrochemical deposition. The optimum growth conditions for the formation of freestanding AAO films with hexagonal compact array of cylindrical pores were studied by field emission scanning electron microscopy and small angle X-ray scattering. The results show well-defined periodic structures with uniform pores size distribution for films with pore diameters between 40 and 70 nm prepared using different voltages and temperatures during the second anodization step. X-ray photoelectron spectroscopy and X-ray diffraction analysis of AAO films filled with copper show the formation of nanowires with high structural order, exhibiting a preferential crystalline orientation along the (2 2 0) axis and only small fraction of copper oxides. The best results for textured Cu nanowires were obtained at a reduction potential of -300 mV. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price. © 2007 American Institute of Physics.