930 resultados para aggregate demand and supply
Resumo:
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Resumo:
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).
Resumo:
Dynamic electricity pricing can produce efficiency gains in the electricity sector and help achieve energy policy goals such as increasing electric system reliability and supporting renewable energy deployment. Retail electric companies can offer dynamic pricing to residential electricity customers via smart meter-enabled tariffs that proxy the cost to procure electricity on the wholesale market. Current investments in the smart metering necessary to implement dynamic tariffs show policy makers’ resolve for enabling responsive demand and realizing its benefits. However, despite these benefits and the potential bill savings these tariffs can offer, adoption among residential customers remains at low levels. Using a choice experiment approach, this paper seeks to determine whether disclosing the environmental and system benefits of dynamic tariffs to residential customers can increase adoption. Although sampling and design issues preclude wide generalization, we found that our environmentally conscious respondents reduced their required discount to switch to dynamic tariffs around 10% in response to higher awareness of environmental and system benefits. The perception that shifting usage is easy to do also had a significant impact, indicating the potential importance of enabling technology. Perhaps the targeted communication strategy employed by this study is one way to increase adoption and achieve policy goals.
Resumo:
Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.
Resumo:
This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.
Resumo:
This paper builds on existing theoretical work on sex markets (Della Giusta, Di Tommaso, and Strøm, 2009a). Using data from the British Sexual Attitudes Survey, we aim to replicate the analysis of the demand for paid sex previously conducted for the US (Della Giusta, Di Tommaso, Shima and Strøm, 2009b). We want to test formally the effect of attitudes, risky behaviors and personal characteristics on the demand for paid sex. Findings from empirical studies of clients suggest that personal characteristics (personal and family background, self-perception, perceptions of women, sexual preferences etc), economic factors (education, income, work) as well as attitudes towards risk (both health hazard and risk of being caught where sex work is illegal), and attitude towards relationships and sex are all likely to affect demand. Previous theoretical work has argued that stigma plays a fundamental role in determining both demand and risk, and that in particular due to the presence of stigma the demand for sex and for paid sex are not, as has been argued elsewhere, perfect substitutes. We use data from the British Sexual Attitudes Survey of 2001 to test these hypotheses. We find a positive effect of education (proxy for income), negative effects of professional status (proxies for stigma associated with buying sex), positive and significant effects of all risky behavior variables and no significant effects of variables which measure the relative degree of conservatism in morals. We conclude with some policy implications.
Resumo:
At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our interdisciplinary analysis is based on all available sources of information on the climate and society of Byzantium, that is textual (documentary), archaeological, environmental, climate and climate model-based evidence about the nature and extent of climate variability in the eastern Mediterranean. The key challenge was, therefore, to assess the relative influence to be ascribed to climate variability and change on the one hand, and on the other to the anthropogenic factors in the evolution of Byzantine state and society (such as invasions, changes in international or regional market demand and patterns of production and consumption, etc.). The focus of this interdisciplinary
Resumo:
In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.
Resumo:
Economic growth is the increase in the inflation-adjusted market value of the goods and services produced by an economy over time. The total output is the quantity of goods or servicesproduced in a given time period within a country. Sweden was affected by two crises during the period 2000-2010: a dot-com bubble and a financial crisis. How did these two crises affect the economic growth? The changes of domestic output can be separated into four parts: changes in intermediate demand, final domestic demand, export demand and import substitution. The main purpose of this article is to analyze the economic growth during the period 2000-2010, with focus on the dot-com bubble in the beginning of the period 2000-2005, and the financial crisis at the end of the period 2005-2010. The methodology to be used is the structural decomposition method. This investigation shows that the main contributions to the Swedish total domestic output increase in both the period 2000-2005 and the period 2005-2010 were the effect of domestic demand. In the period 2005-2010, financial crisis weakened the effect of export. The output of the primary sector went from a negative change into a positive, explained mainly by strong export expansion. In the secondary sector, export had most effect in the period 2000-2005. Nevertheless, domestic demand and import ratio had more effect during the financial crisis period. Lastly, in the tertiary sector, domestic demand can mainly explain the output growth in the whole period 2000-2010.
Resumo:
Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively.
Resumo:
At many institutions, program review is an underproductive exercise. Review of existing programs is often a check-the-box formality, with inconsistent criteria and little connection to institutional priorities or funding considerations. Decisions about where to concentrate resources across the portfolio can be highly politicized. This report profiles how academic planning exemplars use program review as a strategic tool, integrating data on academic quality, student demand, and resource utilization to improve the economics of challenged programs and prioritize programs for investment and expansion.
Resumo:
The Problem/Opportunity: To define, identify, and guide design-based materials collections in academic settings and foster community among those with existing collections and/or those considering creating and supporting one. Contents and topics: What is a materials collection? Why have a materials collection? Acquisition strategies Organizational approaches Programming possibilities Symposium summary Resources