958 resultados para adrenal cortex
Resumo:
The use of addictive drugs can lead to long-term neuroplastic changes in the brain, including behavioral sensitization, a phenomenon related to addiction. Environmental enrichment (EE) is a strategy used to study the effect of environment on the response to several manipulations, including treatment with addictive drugs. Brain-derived neurotrophic factor (BDNF) has been associated with behaviors related to ethanol addiction. The aim of the present study was to evaluate the effects of EE on ethanol-induced behavioral sensitization and BDNF expression. Mice were exposed to EE and then repeatedly treated with a low dose (1.8 g/kg) of ethanol. Another group of mice was first subjected to repeated ethanol treatment according to the behavioral sensitization protocol and then exposed to EE. Environmental enrichment prevented the development of ethanol-induced behavioral sensitization and blocked behavioral sensitization in sensitized mice. Both repeated ethanol and EE decreased BDNF levels in the prefrontal cortex but not in the hippocampus. However, BDNF levels were lower in ethanol-treated mice exposed to EE. These findings suggest that EE can act on the mechanisms implicated in behavioral sensitization, a model for drug-induced neuroplasticity and relapse. Additionally, EE alters BDNF levels, which regulate addiction-related behaviors.
Resumo:
The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/mu L), the nicotinic agonist nicotine (NIC; 320 nmol/mu L), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.
Resumo:
Introduction: The saccadic paradigm has been used to investigate specific cortical networks involving attention. The behavioral and electrophysiological investigations of the SEM contribute significantly to the understanding of attentive patterns presented of neurological and psychiatric disorders and sports performance. Objective: The current study aimed to investigate absolute alpha power changes in sensorimotor brain regions and the frontal eye fields during the execution of a saccadic task. Methods: Twelve healthy volunteers (mean age: 26.25; SD: +/- 4.13) performed a saccadic task while the electroencephalographic signal was simultaneously recorded for the cerebral cortex electrodes. The participants were instructed to follow the LEDs with their eyes, being submitted to two different task conditions: a fixed pattern versus a random pattern. Results: We found a moment main effect for the C3, C4, F3 and F4 electrodes and a condition main effect for the F3 electrode. We also found interaction between factor conditions and frontal electrodes. Conclusions: We conclude that absolute alpha power in the left frontal cortex discriminates the execution of the two stimulus presentation patterns during SEM. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Studies on the environmental consequences of stress are relevant for economic and animal welfare reasons. We recently reported that long-term heat stressors (31 +/- 1 degrees C and 36 +/- 1 degrees C for 10 h/d) applied to broiler chickens (Gallus gallus domesticus) from d 35 to 42 of life increased serum corticosterone concentrations, decreased performance variables and the macrophage oxidative burst, and produced mild, multifocal acute enteritis. Being cognizant of the relevance of acute heat stress on tropical and subtropical poultry production, we designed the current experiment to analyze, from a neuroimmune perspective, the effects of an acute heat stress (31 +/- 1 degrees C for 10 h on d 35 of life) on serum corticosterone, performance variables, intestinal histology, and peritoneal macrophage activity in chickens. We demonstrated that the acute heat stress increased serum corticosterone concentrations and mortality and decreased food intake, BW gain, and feed conversion (P < 0.05). We did not find changes in the relative weights of the spleen, thymus, and bursa of Fabricius (P > 0.05). Increases in the basal and the Staphylococcus aureus-induced macrophage oxidative bursts and a decrease in the percentage of macrophages performing phagocytosis were also observed. Finally, mild, multifocal acute enteritis, characterized by the increased presence of lymphocytes and plasmocytes within the lamina propria of the jejunum, was also observed. We found that the stress-induced hypothalamic-pituitary-adrenal axis activation was responsible for the negative effects observed on chicken performance and immune function as well as for the changes in the intestinal mucosa. The data presented here corroborate with those presented in other studies in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
Oxytocin (OT) is known to be involved in anxiety, as well as cardiovascular and hormonal regulation. The objective of this study was to assess the acute effect of intranasally administered OT on subjective states, as well as cardiovascular and endocrine parameters, in healthy volunteers (n = 14) performing a simulated public speaking test. OT or placebo was administered intranasally 50 min before the test. Assessments were made across time during the experimental session: (1) baseline (-30 min); (2) pre-test (-15 min); (3) anticipation of the speech (50 min); (4) during the speech (1:03 h), post-test time 1 (1:26 h), and post-test time 2 (1:46 h). Subjective states were evaluated by self-assessment scales. Cortisol serum and plasma adrenocorticotropic hormone (ACTH) were measured. Additionally, heart rate, blood pressure, skin conductance, and the number of spontaneous fluctuations in skin conductance were measured. Compared with placebo, OT reduced the Visual Analogue Mood Scale (VAMS) anxiety index during the pre-test phase only, while increasing sedation at the pre-test, anticipation, and speech phases. OT also lowered the skin conductance level at the pre-test, anticipation, speech, and post-test 2 phases. Other parameters evaluated were not significantly affected by OT. The present results show that OT reduces anticipatory anxiety, but does not affect public speaking fear, suggesting that this hormone has anxiolytic properties.
Resumo:
Background/Aims: The purpose of this study was to compare adrenal gland reserve in acute lymphocytic leukemia (ALL) patients 8 weeks after treatment with either prednisone (PRED) or dexamethasone (DEX) during the induction phase of therapy. Methods: A double-blind comparative study of patients treated with PRED and DEX was performed. Sixteen patients received PRED (40 mg/m(2)/day) and 13 patients received DEX (6 mg/m(2)/day), both for 28 days. A low-dose adrenocorticotropic hormone test (1.0 mu g/m(2), IV) was performed before and weekly for 8 weeks after abrupt cessation of glucocorticoid therapy. Sixteen children without ALL were used as controls to determine the cutoff peak cortisol level (14.2 mu g/dl). Results: Both groups (PRED and DEX) displayed similar mean peak cortisol levels before treatment and during the 8 weeks of evaluation (p = 0.652). No relationship was observed between the incidence of infection/stress and peak cortisol level within each group, nor was there a difference in the frequency of infection/stress between groups (p = 0.359). Although the patients presented variations in peak cortisol during the study period, no signs or symptoms of adrenal insufficiency were observed. Conclusion: Patients who received PRED or DEX for 4 weeks showed similar adrenal reserves and infection rates for 8 weeks after abruptly stopping glucocorticoid therapy, suggesting that DEX, which is a better antileukemic drug than PRED, has similar adrenal suppression and recovery rates. Copyright (c) 2012 S. Karger AG, Basel
Resumo:
Immediate early genes (IEG) are presumed to be activated in response to stress, novelty, and learning. Evidence supports the involvement of prefrontal and hippocampal areas in stress and learning, but also in the detection of novel events. This study examined whether a previous experience with shocks changes the pattern of Fos and Egr-1 expression in the medial prefrontal cortex (mPFC), the hippocampal cornus ammonis 1 (CA1), and dentate gyrus (DG) of adult male Wistar rats that learned to escape in an operant aversive test. Subjects previously exposed to inescapable footshocks that learned to escape from Shocks were assigned to the treated group (EXP). Subjects from Group Novelty (NOV) rested undisturbed during treatment and also learned to escape in the test. The nonshock group (NSH) rested undisturbed in both sessions. Standard immunohistochemistry procedures were used to detect the proteins in brain sections. The results show that a previous experience with shocks changed the pattern of IEG expression, then demonstrating c-fos and egr-1 induction as experience-dependent events. Compared with NSH and EXP an enhanced Fos expression was detected in the mPFC and CA1 subfield of Group NOV, which also exhibited increased Egr-1 expression in the mPFC and DG in comparison to NSH. No differences were found in the DG for Fos, or in the CA1 for Egr-1. Novelty, and not the operant aversive escape learning, seems to have generated IEG induction. The results suggest novel stimuli as a possible confounding factor in studies on Fos and/or Egr-1 expression in aversive conditions.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
We report a case of adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism (HH) due to a novel DAX1 mutation. A 19-month-old boy with hyperpigmentation and failure to thrive came to our service for investigation. Three brothers of the patient had died due to adrenal failure, and a maternal cousin had adrenal insufficiency. Adrenoleukodystrophy was excluded. MRI showed normal pituitary and hypothalamus. Plasma hormone evaluation revealed high ACTH (up to 2,790 pg/mL), and low levels of androstenedione, DHEA-S, 11-deoxycortisol, and cortisol. At 14 years of age the patient was still prepubescent, his weight was 43.6 kg (SDS: -0.87) and his height was 161 cm (SDS: -0.36), with normal body proportions. In the GnRH test, basal and maximum values of LH and FSH were respectively 0.6/2.1 and < 1.0/< 1.0 U/L. Molecular investigation identified a novel mutation that consists of a deletion of codon 372 (AAC; asparagine) in exon 1 of DAX1. This mutation was not found in a study of 200 alleles from normal individuals. Prediction site analysis indicated that this alteration, located in the DAX1 ligand-binding domain, may damage DAX1 protein. We hypothesize that the novel (p.Asp372del) DAX1 mutation might be able to cause a disruption of DAX1 function, and is probably involved in the development of AHC and HH in this patient. Arq Bras Endocrinol Metab. 2012;56(8):496-500
Resumo:
Patients with rare and complex diseases such as congenital adrenal hyperplasia (CAH) often receive fragmented and inadequate care unless efforts are coordinated among providers. Translating the concepts of the medical home and comprehensive health care for individuals with CAH offers many benefits for the affected individuals and their families. This manuscript represents the recommendations of a 1.5 day meeting held in September 2009 to discuss the ideal goals for comprehensive care centers for newborns, infants, children, adolescents, and adults with CAH. Participants included pediatric endocrinologists, internal medicine and reproductive endocrinologists, pediatric urologists, pediatric surgeons, psychologists, and pediatric endocrine nurse educators. One unique aspect of this meeting was the active participation of individuals personally affected by CAH as patients or parents of patients. Representatives of Health Research and Services Administration (HRSA), New York-Mid-Atlantic Consortium for Genetics and Newborn Screening Services (NYMAC), and National Newborn Screening and Genetics Resource Center (NNSGRC) also participated. Thus, this document should serve as a "roadmap" for the development phases of comprehensive care centers (CCC) for individuals and families affected by CAH.
Resumo:
Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis.
Resumo:
Drug dependence is a major health problem in adults and has been recognized as a significant problem in adolescents. We previously demonstrated that repeated treatment with a behaviorally sensitizing dose of ethanol in adult mice induced tolerance or no sensitization in adolescents and that repeated ethanol-treated adolescents expressed lower Fos and Egr-1 expression than adult mice in the prefrontal cortex (PFC). In the present work, we investigated the effects of acute and repeated ethanol administration on cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) DNA-binding activity using the electrophoretic mobility shift assay (EMSA) and the phosphorylated CREB (pCREB)/CREB ratio using immunoblotting in both the PFC and hippocampus in adolescent and adult mice. Adult mice exhibited typical locomotor sensitization after 15 days of daily treatment with 2.0 g/kg ethanol, whereas adolescent mice did not exhibit sensitization. Overall, adolescent mice displayed lower CREB binding activity in the PFC compared with adult mice, whereas opposite effects were observed in the hippocampus. The present results indicate that ethanol exposure induces significant and differential neuroadaptive changes in CREB DNA-binding activity in the PFC and hippocampus in adolescent mice compared with adult mice. These differential molecular changes may contribute to the blunted ethanol-induced behavioral sensitization observed in adolescent mice.