915 resultados para acute-phase reactants
Resumo:
Phase-type distributions represent the time to absorption for a finite state Markov chain in continuous time, generalising the exponential distribution and providing a flexible and useful modelling tool. We present a new reversible jump Markov chain Monte Carlo scheme for performing a fully Bayesian analysis of the popular Coxian subclass of phase-type models; the convenient Coxian representation involves fewer parameters than a more general phase-type model. The key novelty of our approach is that we model covariate dependence in the mean whilst using the Coxian phase-type model as a very general residual distribution. Such incorporation of covariates into the model has not previously been attempted in the Bayesian literature. A further novelty is that we also propose a reversible jump scheme for investigating structural changes to the model brought about by the introduction of Erlang phases. Our approach addresses more questions of inference than previous Bayesian treatments of this model and is automatic in nature. We analyse an example dataset comprising lengths of hospital stays of a sample of patients collected from two Australian hospitals to produce a model for a patient's expected length of stay which incorporates the effects of several covariates. This leads to interesting conclusions about what contributes to length of hospital stay with implications for hospital planning. We compare our results with an alternative classical analysis of these data.
Resumo:
Retinal image properties such as contrast and spatial frequency play important roles in the development of normal vision. For example, visual environments comprised solely of low contrast and/or low spatial frequencies induce myopia. The visual image is processed by the retina and it then locally controls eye growth. In terms of the retinal neurotransmitters that link visual stimuli to eye growth, there is strong evidence to suggest involvement of the retinal dopamine (DA) system. For example, effectively increasing retinal DA levels by using DA agonists can suppress the development of form-deprivation myopia (FDM). However, whether visual feedback controls eye growth by modulating retinal DA release, and/or some other factors, is still being elucidated. This thesis is chiefly concerned with the relationship between the dopaminergic system and retinal image properties in eye growth control. More specifically, whether the amount of retinal DA release reduces as the complexity of the image degrades was determined. For example, we investigated whether the level of retinal DA release decreased as image contrast decreased. In addition, the effects of spatial frequency, spatial energy distribution slope, and spatial phase on retinal DA release and eye growth were examined. When chicks were 8-days-old, a cone-lens imaging system was applied monocularly (+30 D, 3.3 cm cone). A short-term treatment period (6 hr) and a longer-term treatment period (4.5 days) were used. The short-term treatment tests for the acute reduction in DA release by the visual stimulus, as is seen with diffusers and lenses, whereas the 4.5 day point tests for reduction in DA release after more prolonged exposure to the visual stimulus. In the contrast study, 1.35 cyc/deg square wave grating targets of 95%, 67%, 45%, 12% or 4.2% contrast were used. Blank (0% contrast) targets were included for comparison. In the spatial frequency study, both sine and square wave grating targets with either 0.017 cyc/deg and 0.13 cyc/deg fundamental spatial frequencies and 95% contrast were used. In the spectral slope study, 30% root-mean-squared (RMS) contrast fractal noise targets with spectral fall-off of 1/f0.5, 1/f and 1/f2 were used. In the spatial alignment study, a structured Maltese cross (MX) target, a structured circular patterned (C) target and the scrambled versions of these two targets (SMX and SC) were used. Each treatment group comprised 6 chicks for ocular biometry (refraction and ocular dimension measurement) and 4 for analysis of retinal DA release. Vitreal dihydroxyphenylacetic acid (DOPAC) was analysed through ion-paired reversed phase high performance liquid chromatography with electrochemical detection (HPLC-ED), as a measure of retinal DA release. For the comparison between retinal DA release and eye growth, large reductions in retinal DA release possibly due to the decreased light level inside the cone-lens imaging system were observed across all treated eyes while only those exposed to low contrast, low spatial frequency sine wave grating, 1/f2, C and SC targets had myopic shifts in refraction. Amongst these treatment groups, no acute effect was observed and longer-term effects were only found in the low contrast and 1/f2 groups. These findings suggest that retinal DA release does not causally link visual stimuli properties to eye growth, and these target induced changes in refractive development are not dependent on the level of retinal DA release. Retinal dopaminergic cells might be affected indirectly via other retinal cells that immediately respond to changes in the image contrast of the retinal image.
Resumo:
The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.
Resumo:
The development of chlamydial vaccines continues to be a major challenge for researchers. While acute infections are the main target of vaccine development groups, Chlamydia is well known for its ability to establish chronic or persistent infections in its host. To date, little effort has focussed specifically on the challenges of vaccines to successfully combat the chronic or persistent phase of the disease and yet this will be a necessary aspect of any fully successful chlamydial vaccine. This short review specifically examines the phenomenon of chlamydial persistence and the unique challenges that this brings to vaccine development.
Resumo:
It is important to detect and treat malnutrition in hospital patients so as to improve clinical outcome and reduce hospital stay. The aim of this study was to develop and validate a nutrition screening tool with a simple and quick scoring system for acute hospital patients in Singapore. In this study, 818 newly admitted patients aged above 18 years old were screened using five parameters that contribute to the risk of malnutrition. A dietitian blinded to the nutrition screening score assessed the same patients using the reference standard, Subjective Global Assessment (SGA) within 48 hours. The sensitivity and specificity were established using the Receiver Operator Characteristics (ROC) curve and the best cutoff scores determined. The nutrition parameter with the largest Area Under the ROC Curve (AUC) was chosen as the final screening tool, which was named 3-Minute Nutrition Screening (3-MinNS). The combination of the parameters weight loss, intake and muscle wastage (3-MinNS), gave the largest AUC when compared with SGA. Using 3-MinNS, the best cutoff point to identify malnourished patients is three (sensitivity 86%, specificity 83%). The cutoff score to identify subjects at risk of severe malnutrition is five (sensitivity 93%, specificity 86%). 3-Minute Nutrition Screening is a valid, simple and rapid tool to identify patients at risk of malnutrition in Singapore acute hospital patients. It is able to differentiate patients at risk of moderate malnutrition and severe malnutrition for prioritization and management purposes.
Resumo:
The efficacy of exercise to promote weight loss could potentially be undermined by its influence on explicit or implicit processes of liking and wanting for food which in turn alter food preference. The present study was designed to examine hedonic and homeostatic mechanisms involved in the acute effects of exercise on food intake. 24 healthy female subjects were recruited to take part in two counterbalanced activity sessions; 50 min of high intensity (70% max heart rate) exercise (Ex) or no exercise (NEx). Subjective appetite sensations, explicit and implicit hedonic processes, food preference and energy intake (EI) were measured immediately before and after each activity session and an ad libitum test meal. Two groups of subjects were identified in which exercise exerted different effects on compensatory EI and food preference. After exercise, compensators (C) increased their EI, rated the food to be more palatable, and demonstrated increased implicit wanting. Compensators also showed a preference for high-fat sweet food compared with non-compensators (NC), independent of the exercise intervention. Exercise-induced changes in the hedonic response to food could be an important consideration in the efficacy of using exercise as a means to lose weight. An enhanced implicit wanting for food after exercise may help to explain why some people overcompensate during acute eating episodes. Some individuals could be resistant to the beneficial effects of exercise due to a predisposition to compensate for exercise-induced energy expenditure as a result of implicit changes in food preferences.
Resumo:
In this age of evidence-based practice, nurses are increasingly expected to use research evidence in a systematic and judicious way when making decisions about patient care practices. Clinicians recognise the role of research when it provides valid, realistic answers in practical situations. Nonetheless, research is still perceived by some nurses as external to practice and implementing research findings into practice is often difficult. Since its conceptual platform in the 1960s, the emergence and growth of Nursing Development Units, and later, Practice Development Units has been described in the literature as strategic, organisational vehicles for changing the way nurses think about nursing by promoting and supporting a culture of inquiry and research-based practice. Thus, some scholars argue that practice development is situated in the gap between research and practice. Since the 1990s, the discourse has shifted from the structure and outcomes of developing practice to the process of developing practice, using a Practice Development methodology; underpinned by critical social science theory, as a vehicle for changing the culture and context of care. The nursing and practice development literature is dominated by descriptive reports of local practice development activity, typically focusing on reflection on processes or outcomes of processes, and describing perceived benefits. However, despite the volume of published literature, there is little published empirical research in the Australian or international context on the effectiveness of Practice Development as a methodology for changing the culture and context of care - leaving a gap in the literature. The aim of this study was to develop, implement and evaluate the effectiveness of a Practice Development model for clinical practice review and change on changing the culture and context of care for nurses working in an acute care setting. A longitudinal, pre-test/post-test, non-equivalent control group design was used to answer the following research questions: 1. Is there a relationship between nurses' perceptions of the culture and context of care and nurses' perceptions of research and evidence-based practice? 2. Is there a relationship between engagement in a facilitated process of Practice Development and change in nurses' perceptions of the culture and context of care? 3. Is there a relationship between engagement in a facilitated process of Practice Development and change in nurses' perceptions of research and evidence-based practice? Through a critical analysis of the literature and synthesis of the findings of past evaluations of Nursing and Practice Development structures and processes, this research has identified key attributes consistent throughout the chronological and theoretical development of Nursing and Practice Development that exemplify a culture and context of care that is conducive to creating a culture of inquiry and evidence-based practice. The study findings were then used in the development, validation and testing of an instrument to measure change in the culture and context of care. Furthermore, this research has also provided empirical evidence of the relationship of the key attributes to each other and to barriers to research and evidence-based practice. The research also provides empirical evidence regarding the effectiveness of a Practice Development methodology in changing the culture and context of care. This research is noteworthy in its contribution to advancing the discipline of nursing by providing evidence of the degree to which attributes of the culture and context of care, namely autonomy and control, workplace empowerment and constructive team dynamics, can be connected to engagement with research and evidence-based practice.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Patients with chest discomfort or other symptoms suggestive of acute coronary syndrome (ACS) are one of the most common categories seen in many Emergency Departments (EDs). While the recognition of patients at high-risk of ACS has improved steadily, identifying the majority of chest pain presentations who fall into the low-risk group remains a challenge. Research in this area needs to be transparent, robust, applicable to all hospitals from large tertiary centres to rural and remote sites, and to allow direct comparison between different studies with minimum patient spectrum bias. A standardised approach to the research framework using a common language for data definitions must be adopted to achieve this. The aim was to create a common framework for a standardised data definitions set that would allow maximum value when extrapolating research findings both within Australasian ED practice, and across similar populations worldwide. Therefore a comprehensive data definitions set for the investigation of non-traumatic chest pain patients with possible ACS was developed, specifically for use in the ED setting. This standardised data definitions set will facilitate ‘knowledge translation’ by allowing extrapolation of useful findings into the real-life practice of emergency medicine.
Resumo:
Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.
Resumo:
Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (