958 resultados para Zirconium ceramic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This was a retrospective cohort study designed to evaluate the clinical performance of ceramicveneered zirconia frameworks. Materials and Methods: Patients were recruited according to defined inclusion criteria. All patients were checked every 4 months from the time of definitive rehabilitation. At the end of 2013, all patients were rescheduled and rechecked for study purposes. The restorative procedures assessment was performed by previously established methods. The primary outcomes were the survival and success rates of the prosthesis. Descriptive statistics were used for the patient's demographics, implant distribution, and occurrence of complications. To study the survival and success of the prostheses, a Cox Regression analysis was used with a model constructed in a forward conditional stepwise mode. Predictive variables were included in the model, and adjusted survival curves were obtained for each outcome. Results: From 2008 to 2013, 75 patients were rehabilitated with 92 implant-supported, screw-retained, full-arch ceramic-veneered zirconia framework rehabilitations. The range of follow-up was between 6 months and 5 years. From the 92 full implant-supported screw-retained full-arch rehabilitations, Cox regression analysis indicated that within a 5-year time frame, the probability of framework fracture, major chipping, minor chipping, or any of the former combined to occur was 17.6%, 46.5%, 69.2%, and 90.5%, respectively. Conclusion: Results suggest zirconia as a suitable material for framework structure in implant-supported, full-arch rehabilitations. However, it experiences a high incidence of technical complications, mainly due to ceramic chipping. Further clinical studies should aim to ascertain the effects of clinical features and manufacturing procedures on the survival rates of these prostheses. © 2016 by Quintessence Publishing Co Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this research was to perform an in vitro assessment of the ability of microscale topography to alter cell behaviour, with specific regard to producing favourable topography in an orthopaedic ceramic material suitable for implantation in the treatment of arthritis. Topography at microscale and nanoscale alters the bioactivity of the material. This has been used in orthopaedics for some time as seen with optimal pore size in uncemented hip and knee implants. This level of topography involves scale in hundreds of micrometres and allows for the ingrowth of tissue. Topography at smaller scale is possible thanks to progressive miniaturisation of technology. A topographic feature was created in a readily available clinically licensed polymer, Polycaprolcatone (PCL). The effect of this topography was assessed in vitro. The same topography was transferred to the latest generation composite orthopaedic ceramic, zirconia toughened alumina (ZTA). The fidelity of reproduction of the topography was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These investigations showed more accurate reproduction of the topography in PCL than ZTA with some material artefacts in the ZTA. Cell culture in vitro was performed on the patterned substrates. The response of osteoprogenitor cells was assessed using immunohistochemistry, real-time polymerase chain reaction and alizarin staining. These results showed a small effect on cell behaviour. Finally metabolic comparison was made of the effects created by the two different materials and the topography in each. The results have shown a reproducible topography in orthopaedic ceramics. This topography has demonstrated a positive osteogenic effect in both polycaprolactone and zirconia toughened alumina across multiple assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the project is the creation of a new model for the analysis of the political and social structures of the Northern Levant during the Iron Age, through the study of the production and circulation of ceramics in urban and rural centers. The project includes an innovative approach compared to a traditional contextual and analytical study of ceramic material. The geographical area under consideration represents an ideal context for understanding these dynamics, as a place of interaction between culturally different but constantly communicating areas (Eastern Mediterranean, Syria, Upper Mesopotamia). They corresponds to present-day southeastern Turkey and northern Syria, with the Mediterranean coast and the Euphrates River as limits to the west and east, respectively. The chronological interval taken into consideration by the study extends from the twelfth century BC. to the seventh century BC, corresponding to a phase of political fragmentation of the region into small-medium state entities and their subsequent conquest by the Neo-Assyrian empire starting from the end of the ninth century BC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing consumption rates among citizens and the uncontrolled exploitation of natural resources have made environmental pollution and management of waste the main problems facing humanity in its upcoming future. Together with generation of energy and transport, industrial production certainly plays a key role in the genesis of these problems. It is for this reason that the concepts of environmental, social and economic sustainability have emerged over the years as the cornerstones for future development. In light of this, the most forward-looking industries have begun to study their impact on environment and society in order to improve their performances and, at the same time, to anticipate the increasingly rigorous environmental regulations. In this work, various performance indicators related to the Italian ceramic tile sector will be presented and discussed. In particular, the emission factor of characteristic pollutants will be reported on a period of up to fifteen years while data regarding waste management, concentration of pollutants and emission legal limits for the last decade will be here disclosed as a result of a vast analysis on recorded data. The collected information describes the present level of performance of the ceramic tile manufacturing industries in Italy and shows how recycling is now a consolidated reality and how some pollutants, such as particulate matter, fluorine and lead are actually disappearing from production processes and how others, such as volatile organic compounds, are increasing instead. Moreover, the adoption of alternative raw materials for the production of ceramic tiles is discussed and the implementation of the recycling of various waste is addressed at experimental or industrial scale. Finally, the development of a new ceramic engobe with high content of waste glass (20%) is presented as an experimental example of reutilization of resources in the ceramic tile industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Lithium-silicate (LiSi) ceramic is nowadays widely used in dentistry. However, for the longevity of LiSi indirect restorations, it is important to pretreat the material and the dental substrate adequately. However, is not certain how the simplification of the manufacturing and conditioning procedures influences the bonding performances of LiSi ceramic restorations. Accordingly, the aims of this thesis were to investigate the effect of: 1) different LiSi ceramic surface decontamination procedures on the shear bond strength (SBS) to resin composite; 2) different types of lithium-disilicate (LiDi) (pressed vs CAD-CAM) on SBS to resin composite; 3) an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2] on bonding performances to dentin. Materials and Methods: SBS test was used to investigate the influence of different cleaning protocols applied, or different processing techniques (CAD or PRESS) on the bond strength to composite resin. The third study tackled the interface between restorative materials and dentin, and investigated the microtensile bond strength test (µTBS), nanoleakage expression analysis (NL), gelatin zymography and in situ zymography of dentin conditioned with an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2]. Results: MEP showed comparable bond strength to the double HP etching and higher compared to other groups. BS of press LiSi to composite was higher than that of CAD/CAM LiSi. ZON pretreatment increased bond strength to dentin when used with a universal adhesive, and inhibited dentinal endogenous enzymes. Conclusions: While simplification of the LiSi conditioning and cleaning procedures seems to yield bond strength comparable to the traditional procedures, it could be recommended in the clinical practice. However, pressed LiSi still seems to perform better in terms of bond strength compared to the CAD/CAM LiSi. Further, the novel ZON etchant seems to perform better compared to the traditional phosphoric dentin etching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first main conclusion drawn from this dissertation concerns the amount of Pt deposited on the asymmetric layer of membrane produced by tape casting porosity shaping method. Three different amounts were investigated (0.15, 1.5 and 4.5 mg cm-2 ). The most optimal performance, based on H2 permeation performances, was attained when 1.5 mg cm-2 of Pt was deposited on the porous layer, resulting in a 0.642 mL min-1 cm-2 permeated H2 when 80% H2 in He was employed as the feed. Pt deposition method is influenced by the concentration of the Pt precursor, which results in different morphology of the catalyst. The second development focused on further optimization on tape casting membranes concerning the solvent employed for the Pt catalyst deposition. The same concentration of Pt was employed, depositing 1.5 mg cm-2 on the porous side of the membrane, but a mixture of acetone and water was employed as solvent. This mixture allowed the suppression of effects leading to poorly dispersed particles. As a result, it was possible to achieve 0.74 mL min-1 cm-2 at 750°C with 50% H2 in He. Lastly, first-ever permeation performance measurements into an innovative ceramic membrane type for hydrogen separation was investigated. In-depth research was done on a group of hierarchically-structured BaCe0.65Zr0.20Y0.15O3-δ(BCZY) - Gd0.2Ce0.8O2-δ(GDC) membranes produced by freeze casting porosity shaping method. Membranes were investigated observing the effect of deposition solvent and the effect of porous layer thickness. Employing a mixture of Acetone and water resulted in better hydrogen permeation at temperatures (T > 650°C), reaching 0.26 mL min-1 cm-2 at 750°C with 50% H2 in He. The reduction of porous layer thickness led to a hydrogen flow of 0.33 mL min-1 cm-2 , at 750°C with 50% H2 in He.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p<0.05). The Vivodent tooth (0.64 ± 0.17 mm) exhibited the best wear resistance among the denture teeth tested against airborne particle abraded ceramic. There were no statistically significant differences (p>0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.