908 resultados para Yeast
Resumo:
Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.
Resumo:
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Resumo:
Homologous chromosomes pair, and then migrate to opposite poles of the spindle at meiosis I. In most eukaryotic organisms, reciprocal recombinations (crossovers) between the homologs are critical to the success of this process. Individuals with defects in meiotic recombination typically produce high levels of aneuploid gametes and exhibit low fertility or are sterile. The experiments described here were designed to test whether different crossovers are equally able to contribute to the fidelity of meiotic chromosome segregation in yeast. These experiments were performed with model chromosomes with which it was possible to control and measure the distributions of meiotic crossovers in wild-type cells. Physical and genetic approaches were used to map crossover positions on model chromosomes and to correlate crossover position with meiotic segregation behavior. The results show that crossovers at different chromosomal positions have different abilities to enhance the fidelity of meiotic segregation.
Resumo:
A novel Saccharomyces cerevisiae mutant, unable to grow in the presence of 12.5 mM EGTA, was isolated by replica plating. The phenotype of the mutant is caused by a single amino acid change (Gly149 to Arg) in the essential yeast gene CDC1. The mutant could be suppressed by overexpression of the SMF1 gene, which was isolated as an extragenic high-copy suppressor. The SMF1 gene codes for a highly hydrophobic protein and its deletion renders the yeast cells sensitive to low manganese concentration. In accordance with this observation, the smf1 null mutant exhibits reduced Mn2+ uptake at micromolar concentrations. Using a specific antibody, we demonstrated that Smf1p is located in the yeast plasma membrane. These results suggest that Smf1p is involved in high-affinity Mn2+ uptake. This assumption was also tested by overexpressing the SMF1 gene in the temperature-sensitive mutant of the mitochondrial processing peptidase (MAS1). SMF1 overexpression as well as addition of 1 mM Mn2+ to the growth medium complemented this mutation. This also suggests that in vivo Mas1p is a manganese-dependent peptidase. The yeast Smf1p resembles a protein from Drosophila and mammalian macrophages. The latter was implicated in conferring resistance to mycobacteria. A connection between Mn2+ transport and resistance or sensitivity to mycobacteria is discussed.
Resumo:
Addition of a saturated fatty acid (SFA) induced a strong increase in heat shock (HS) mRNA transcription when cells were heat-shocked at 37 degrees C, whereas treatment with an unsaturated fatty acid (UFA) reduced or eliminated the level of HS gene transcription at 37 degrees C. Transcription of the delta 9-desaturase gene (Ole1) of Histoplasma capsulatum, whose gene product is responsible for the synthesis of UFA, is up-regulated in a temperature-sensitive strain. We show that when the L8-14C mutant of Saccharomyces cerevisiae, which has a disrupted Ole1 gene, is complemented with its own Ole1 coding region under control of its own promoter or Ole1 promoters of H. capsulatum, the level of HS gene transcription depends on the activity of the promoters. Fluorescence anisotropy of mitochondrial membranes of completed strains corresponded to the different activity of the Ole1 promoter used. We propose that the SFA/UFA ratio and perturbation of membrane lipoprotein complexes are involved in the perception of rapid temperature changes and under HS conditions disturbance of the preexisting membrane physical state causes transduction of a signal that induces transcription of HS genes.
Resumo:
Fusion proteins between the green fluorescent protein (GFP) and the cytoskeleton proteins Act1p (actin), Sac6p (yeast fimbrin homolog), and Abp1p in budding yeast (Saccharomyces cerevisiae) localize to the cortical actin patches. The actin fusions could not function as the sole actin source in yeast, but fusions between the actin-binding proteins Abp1p and Sac6p complement fully the phenotypes associated with their gene deletions. Direct observation in vivo reveals that the actin cortical patches move. Movement of actin patches is constrained to the asymmetric distribution of the patches in growing cells, and this movement is greatly reduced when metabolic inhibitors such as sodium azide are added. Fusion protein-labeled patches are normally distributed during the yeast cell cycle and during mating. In vivo observation made possible the visualization of actin patches during sporulation as well.
Resumo:
We have generated a physical map of human chromosome bands 20q11.2-20q13.1, a region containing a gene involved in the development of one form of early-onset, non-insulin-dependent diabetes mellitus, MODY1, as well as a putative myeloid tumor suppressor gene. The yeast artificial chromosome contig consists of 71 clones onto which 71 markers, including 20 genes, 5 expressed sequence tags, 32 simple tandem repeat DNA polymorphisms, and 14 sequence-tagged sites have been ordered. This region spans about 18 Mb, which represents about 40% of the physical length of 20q. Using this physical map, we have refined the location of MODY1 to a 13-centimorgan interval (approximately equal to 7 Mb) between D20S169 and D20S176. The myeloid tumor suppressor gene was localized to an 18-centimorgan interval (approximately equal to 13 Mb) between RPN2 and D20S17. This physical map will facilitate the isolation of MODY1 and the myeloid tumor suppressor gene.
Resumo:
Clinically important mutant p53 proteins may be tumorigenic through a dominant-negative mechanism or due to a gain-of-function. Examples for both hypotheses have been described; however, it remains unclear to what extent they apply to TP53 mutations in general. Here it is shown that the mutational spectrum of dominant-negative p53 mutants selected in a novel yeast assay correlates tightly with p53 mutations in cancer. Two classes of dominant-negative mutations are described; the more dominant one affects codons that are essential for the stabilization of the DNA-binding surface of the p53 core domain and for the direct interaction of p53 with its DNA binding sites. These results predict that the vast majority of TP53 mutations leading to cancer do so in a dominant-negative fashion.
Resumo:
We describe an integrated approach to large-scale physical mapping using an Alu-PCR hybridization screening strategy in conjunction with direct PCR-based screening to construct a continuous yeast artificial chromosome map covering >20 mb in human chromosome 3, bands p14-p21, composed of 205 loci, connected by 480 yeast artificial chromosomes, with average interlocus distance of approximately equal to 100 kb. We observe an inverse distribution of Alu-PCR and (CA)n markers. These results suggest that the two screening methods may be complementary and demonstrate the utility of Alu-PCR hybridization screening in the closure of high-resolution human physical maps.
Resumo:
The crystal structure of the tyrosine-bound T state of allosteric yeast Saccharomyces cerevisiae chorismate mutase was solved by molecular replacement at a resolution of 2.8 angstroms using a monomer of the R-state structure as the search model. The allosteric inhibitor tyrosine was found to bind in the T state at the same binding site as the allosteric activator tryptophan binds in the R state, thus defining one regulatory binding site for each monomer. Activation by tryptophan is caused by the larger steric size of its side chain, thereby pushing apart the allosteric domain of one monomer and helix H8 of the catalytic domain of the other monomer. Inhibition is caused by polar contacts of tyrosine with Arg-75 and Arg-76 of one monomer and with Gly-141, Ser-142, and Thr-145 of the other monomer, thereby bringing the allosteric and catalytic domains closer together. The allosteric transition includes an 8 degree rotation of each of the two catalytic domains relative to the allosteric domains of each monomer (domain closure). Alternatively, this transition can be described as a 15 degree rotation of the catalytic domains of the dimer relative to each other.
Resumo:
By using reverse transcription-coupled PCR on rat anterior pituitary RNA, we isolated a 285-bp cDNA coding for a novel subtilisin/kexin-like protein convertase (PC), called rat (r) PC7. By screening rat spleen and PC12 cell lambda gt11 cDNA libraries, we obtained a composite 3.5-kb full-length cDNA sequence of rPC7. The open reading frame codes for a prepro-PC with a 36-amino acid signal peptide, a 104-amino acid prosegment ending with a cleavable RAKR sequence, and a 747-amino acid type I membrane-bound glycoprotein, representing the mature form of this serine proteinase. Phylogenetic analysis suggests that PC7 represents the most divergent enzyme of the mammalian convertase family and that it is the closest member to the yeast convertases krp and kexin. Northern blot analyses demonstrated a widespread expression with the richest source of rPC7 mRNA being the colon and lymphoid-associated tissues. In situ hybridization revealed a distinctive tissue distribution that sometimes overlaps with that of furin, suggesting that PC7 has widespread proteolytic functions. The gene for PC7 (Pcsk7) was mapped to mouse chromosome 9 by linkage analysis of an interspecific backcross DNA panel.
Resumo:
Human CAS cDNA contains a 971-aa open reading frame that is homologous to the essential yeast gene CSE1. CSE1 is involved in chromosome segregation and is necessary for B-type cyclin degradation in mitosis. Using antibodies to CAS, it was shown that CAS levels are high in proliferating and low in nonproliferating cells. Here we describe the distribution of CAS in cells and tissues analyzed with antibodies against CAS. CAS is an approximately 100-kDa protein present in the cytoplasm of proliferating cells at levels between 2 x 10(5) and 1 x 10(6) molecules per cell. The intracellular distribution of CAS resembles that of tubulin. In interphase cells, anti-CAS antibody shows microtubule-like patterns and in mitotic cells it labels the mitotic spindle. CAS is removed from microtubules by mild detergent treatment (cytoskeleton preparations) and in vincristine- or taxol-treated cells. CAS is diffusely distributed in the cytoplasm with only traces present in tubulin paracrystals or bundles. Thus, CAS appears to be associated with but not to be an integral part of microtubules. Immunohistochemical staining of frozen tissues shows elevated amounts of CAS in proliferating cells such as testicular spermatogonia and cells in the basal layer cells of the colon. CAS was also concentrated in the respiratory epithelium of the trachea and in axons and Purkinje cells in the cerebellum. These cells contain many microtubules. The cellular location of CAS is consistent with an important role in cell division as well as in ciliary movement and vesicular transport.
Resumo:
Transposon Tn1000 has been adapted to deliver novel DNA sequences for manipulating recombinant DNA. The transposition procedure for these "tagged" Tn1000s is simple and applicable to most plasmids in current use. For yeast molecular biology, tagged Tn1000s introduce a variety of yeast selective markers and replication origins into plasmids and cosmids. In addition, the beta-globin minimal promoter and lacZ gene of Tn(beta)lac serve as a mobile reporter of eukaryotic enhancer activity. In this paper, Tn(beta)lac was used to localize a mouse HoxB-complex enhancer in transgenic mice. Other tagged transposons create Gal4 DNA-binding-domain fusions, in either Escherichia coli or yeast plasmids, for use in one- and two-hybrid tests of transcriptional activation and protein-protein interaction, respectively. With such fusions, the Saccharomyces cerevisiae Swi6 G1/S-phase transcription factor and the Xenopus laevis Pintallavis developmental regulator are shown to activate transcription. Furthermore, the same transposon insertions also facilitated mapping of the Swi6 and Pintallavis domains responsible for transcriptional activation. Thus, as well as introducing novel sequences, tagged transposons share the numerous other applications of transposition such as producing insertional mutations, creating deletion series, or serving as mobile primer sites for DNA sequencing.
Resumo:
The est1 mutant was previously identified because it is defective in telomere maintenance and displays a senescent phenotype. To see if Est1 might be a component of yeast telomerase, we examined immunoprecipitated Est1. The yeast telomerase RNA Tlc1 specifically coprecipitated with Est1. Furthermore, the Est1 immunoprecipitates contained a telomerase-like activity. As expected for yeast telomerase, the activity elongated telomeric primers, it required dGTP and dTTP but not dATP or dCTP, and it was sensitive to RNase A. Further evidence suggesting that the activity was telomerase was obtained from experiments using a TLC1-1 mutant strain, which has a mutant telomerase template containing dG residues. The activity immunoprecipitated from TLC1-1 mutant strains incorporated 32P-labeled dCTP, while activity from TLC1 strains did not. Use of different telomeric primer substrates revealed two distinguishable telomerase-like activities: one was dependent on TLC1, and one was not. The TLC1-independent activity may be due to a second yeast telomerase RNA, or it may be some other kind of activity.
Resumo:
The yeast Saccharomyces cerevisiae has two separate systems for zinc uptake. One system has high affinity for substrate and is induced in zinc-deficient cells. The second system has lower affinity and is not highly regulated by zinc status. The ZRT1 gene encodes the transporter for the high-affinity system, called Zrt1p. The predicted amino acid sequence of Zrt1p is similar to that of Irt1p, a probable Fe(II) transporter from Arabidopsis thaliana. Like Irt1p, Zrt1p contains eight potential transmembrane domains and a possible metal-binding domain. Consistent with the proposed role of ZRT1 in zinc uptake, overexpressing this gene increased high-affinity uptake activity, whereas disrupting it eliminated that activity and resulted in poor growth of the mutant in zinc-limited media. Furthermore, ZRT1 mRNA levels and uptake activity were closely correlated, as was zinc-limited induction of a ZRT1-lacZ fusion. These results suggest that ZRT1 is regulated at the transcriptional level by the intracellular concentration of zinc. ZRT1 is an additional member of a growing family of metal transport proteins.