938 resultados para Y-ZR ALLOYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 degrees C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (similar to 200-300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pass ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first stable isotope (delta O-18 and delta C-13) data of a similar to 400 years (1590-2006 AD) long annual to decadal-resolution speleothem record collected from the Indian Lesser Himalaya. The data show a variation from -2.7 to -5.9 parts per thousand in delta O-18 and -5.3 to -8.8 parts per thousand in delta C-13. The isotopic analyses indicate that the climate during this period can be divided into two stages: a wet phase during the Little Ice Age (LIA) (1590-1850 AD) and comparatively dry phase during the post-LIA after 1850 AD. However, the record also documents the minor dry events during the LIA and a wet episode after the LIA. Within the age uncertainty, the dry spells during the LIA are linked with the historical drought events in the Indian subcontinent and similar latitudes. The isotopic record is consistent with a number of previous studies in the areas influenced by the Westerlies but appears to be conflicting to the regions, dominated by the Indian Summer Monsoon (ISM). This may be due to the possible changes in the strength of Westerlies in the study area and added by negative anomaly of North Atlantic Oscillation (NAO) during the LIA. (C) 2012 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations are carried out by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The measurements reveal that GeTe crystals are predominant in alloys up to 0.20 at.% of Se content indicating interstitial occupancy of Se in the Ge vacancies. Raman modes in the GeTe alloys changes to GeSe modes with the addition of Se. Amorphousness in the alloy increases with increase of Se and 0.50 at.% Se alloy forms a homogeneous amorphous phase with a mixture of Ge-Se and Te-Se bonds. Structural changes are explained with the help of bond theory of solids. Crystallization temperature is found to be increasing with increase of Se, which will enable the amorphous stability. For the optimum 0.50 at.% Se alloy, the melting temperature has reduced which will reduce the RESET current requirement for the phase change memory applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk samples of S40Se60-xSbx (with x=10, 20, 30, 40 at. %) were prepared from high purity S, Se and Sb by melt quenching method. XRD studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with composition has been investigated by XPS and Raman spectroscopy. The intensity of XPS core level spectra changes with addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly shows the structural modifications due to Sb addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion couple technique is used to study interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr systems. Interdiffusion coefficients at different temperatures and compositions are determined using the relation developed by Wagner. The change in activation energy for interdiffusion with composition is determined. Further, impurity diffusion coefficient of the species are determined and compared with the available data in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Tb/Dy ratio on the structural and magnetic properties of (Tb,Dy)Fe-2 class of alloys has been investigated using nine alloys of TbxDy1-xFe1.95 (x = 0-1) covering the entire range. Our results indicate that the three phases viz. (Tb,Dy)Fe-2 (major phase), (Tb,Dy)Fe-3 and(Tb,Dy)-solid solution (minor phases) coexist in all the alloys. The volume fraction of pro-peritectic (Tb,Dy)Fe-3 phase however, has a minimum at x = 0.4 and a maximum at x = 0.6 compositions. The volume fraction of this phase decreases upon heat treatment at 850 degrees C and 1000 degrees C. A Widmanstatten type precipitate of (Tb,Dy)Fe-3 was observed for Dy-rich compositions (0 <= x <= 0.5). The microstructural investigations indicate that the ternary phase equilibria of Tb-Dy-Fe are sensitive to Tb/Dy ratio including the expansion of (Tb,Dy)Fe-2 phase field which is in contrast to the pseudo-binary assumption that is followed in available literature to date. The lattice parameter, Curie temperature and coercivity are found to increase with Tb addition. Split of (440) peak of (Tb,Dy)Fe-2 observed in x >= 0.3 alloys indicate, a spin reorientation transition from 100] to 111] occurs with Tb addition. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congruent oxidation occurs when an alloy oxidizes at constant oxygen chemical potential and temperature to an oxide in which the ratio of metallic components is the same as in the alloy. In alloys that undergo congruent oxidation concentration gradients near the surface are minimized. In this work thermodynamic conditions for congruent oxidation of binary and ternary alloys are formulated using the regular solution model to describe thermodynamic mixing properties. The conditions under which congruent oxidation can occur are identified. Congruent oxidation of a binary alloy X-Y will occur only if difference in oxygen potential for the oxidation of the two pure metals is less than twice the difference in regular solution parameters for the oxide and alloy phases (Omega(O)-Omega(A)). In the case of ternary alloys, congruency requirements for both two-phase and three-phase equilibria are discussed. Since the conditions for congruent oxidation of ternary alloy X-Y-Z depends on many parameters, the effect of systematic variation of the binary sets of regular solution parameters on the congruent composition is explored by numerical solution of the governing equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes resulting from isothermal decomposition of the beta-phase have been studied in Cu-rich binary Cu-Al and ternary Cu-Al-Sn alloys containing up to 3 at.% Sn at temperatures from 873 to 673 K. Results are presented as TTT diagrams. The decomposition occurs in several stages, each of which involves the establishment of metastable equilibrium between beta and one or more of the product phases alpha, beta(1) and gamma(2). Addition of Sn has been shown to increase the stability of the ordered beta(1)-phase in relation to beta. In alloys containing more than 2 at.% Sn, the beta(1) emerges as a stable phase. At low Sn concentrations beta(1) is metastable. An important new finding is the existence of three-phase equilibrium microstructure containing alpha, beta(1) and gamma(2). Increasing addition of Sn alters the morphology of beta(1) from rosettes to dendrites and finally to Widmanstatten needles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anelastic and viscoplastic characteristics of Cu50Zr50 and Cu65Zr35 binary bulk metallic glasses at room temperature were examined through nanoindentation creep experiments. Results show that both the deformations are relatively more pronounced in Cu50Zr50 than in Cu65Zr35, and their amount increases with the loading rate. The results are analyzed in terms of the influences of structural defects and loading rate on the room temperature indentation creep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.