984 resultados para White Provision Co.
Resumo:
მოყვანილია ატმოსფეროში არსებული სითბური გაზების შთანთქმის სპექტრების ექსპერიმენტული მონაცემები, მზის რადიაციის ატმოსფეროს ვერტიკალურ სვეტში გავლისას. დადგენილია მზის ინფრაწითელი გამოსხივების სიხშირეთა (Δγ) ინტერვალები, რომლებიც შეესაბამება შესასწავლი გზების შთანთქმის სპექტრებს.
Resumo:
v.7=[no.1-8]=new ser.:v.1 (1883-1884)
Resumo:
v.4=[no.25-32] (1877-1878)
Resumo:
v.3=[no.17-24] (1875-1876)
Resumo:
v.2=[no.9-16] (1873-1874)
Resumo:
v.5=[no.33-40] (1879-1880)
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2011
Resumo:
v.6=[no.41-48] (1881-1882)
Resumo:
v.9=[no.17-24]=new ser.:v.3 (1887-1888)
Resumo:
AbstractBackground:One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes).Objective:This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats.Method:In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg-1.day-1, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage.Results:Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively).Conclusion:The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2008
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2010
Resumo:
This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.
Resumo:
I. This paper deals with an experiment carried out to evaluate the effect of the sugar cane upper end on the composition of the sugar cane harvest as a raw material for the sugar industry. The variety studied was Co 421. The authors intend to study other varieties in the future. The data were collected from plant cane, at intervals of two weeks, always from the same field, from a small central area of 3.000 square meters approximately. Sixty (60) stalks were cut in each occasion, randomly chosen from the whole area. They were afterwards separated into three groups of 20 stalks, one for each of the treatments, namely: a) Complete stalks, with no leaves or sheaths. b) Stalks harvested by the technique of REYNOSO, that is, as usually done in practice. c) Stalks with the tops completely cut out, that is, cut by technique of REYNOSO and then with 3 other top internodes eliminated. The treatments caused significant differences on the following technological characteristics: a) Weight b) Cane pol c) Available sucrose (pol) per cent cane d) Cane juice pol e) Saline coefficient of juice. II. Except for weight, all changes were favorable to treatment c, even if with differences relatively slight, in percentage. IIII. Treatment differences for cane fiber, brix, reducing sugars, juice ashes, coefficient of purity and glucose coefficient were not significant. IV. Time of harvest was an important factor affecting the composition of the cane and of the juice. V. On the average the available sucrose of cane for treatments, with an standard error of 0.13%, was: Treatment c 13.05% Treatment b 12.65% Treatment a 12.53% This shows that there is no sound basis for the heavy fines applied by some sugar mills to planters who do not cut low enough the tops of the cane stalks.