945 resultados para West Point Region (N.Y.)--Remote-sensing maps.
Resumo:
La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.
Resumo:
La determinación de la línea histórica de deforestación como parte del establecimiento de la línea de referencia de emisiones, en el marco del programa REDD (Reducing Emissions from Deforestation and Forest Degradation), permite medir la evolución de la pérdida de bosque en un periodo definido de tiempo. El objetivo fue calcular la línea histórica de deforestación mediante estudio multitemporal para el periodo 1998-2011, en la región de San Martín (Perú), utilizando la metodología de Análisis de Mezclas Espectrales (Spectral Mixtures Analysis) con imágenes Landsat 5-TM. Palabras clave: teledetección, Landsat 5-TM, análisis de mezclas espectrales, REDD, Protocolo de Kioto, deforestación, Amazonía, SMA Spectral Mixture Analysis for the study of deforestation and establishing reference emissions level within the REDD Program framework. Application to the region of San Martin, Peru. Abstract: Determination of the historical baseline of deforestation as part of establishing the reference emissions level within the REDD (Reducing Emissions from Deforestation and Forest Degradation) Program framework allows for the measurement of the evolution of forest loss over a defined period time. The objective was to estimate the historical baseline of deforestation through a multi-temporal study for the period 1998-2011, in the region of San Martin (Peru), using the methodology of Spectral Mixture Analysis (Mixtures Spectral Analysis) from Landsat 5-TM imagery. Keywords: remote sensing, Landsat 5-TM, spectral mixtures analysis, REDD, Kyoto Protocol, deforestation, Amazon, SMA
Resumo:
La erosión hídrica en España es un problema grave, por las consecuencias que comporta en términos de pérdida del recurso suelo, sobre el que se sustenta la vida. Desde la década de los años ochenta del pasado siglo, la Administración Central ha realizado dos inventarios de erosión del suelo a nivel nacional: Los Mapas de Estados Erosivos (MEEs) y el Inventario Nacional de Erosión del Suelo (INES). En la presente Tesis Doctoral se han abordado las siguientes cuestiones: - Se ha profundizado en el análisis y aplicación de nuevas herramientas en la estimación del factor topográfico y del factor vegetación, que intervienen en los modelos de cálculo de las pérdidas de suelo, para mejorar la precisión en los resultados de la estimación de las tasas de erosión con los mismos. - Se ha establecido un procedimiento que permita realizar un inventario continuo de los Estados Erosivos de España, fijando como premisa el tiempo para su actualización. La Tesis desarrolla un procedimiento que permite comprobar que, la precisión utilizada en la cartografía base para determinar el factor vegetación y el factor topográfico del modelo USLE, influye en los resultados de la estimación de las tasas de erosión. También se ha realizado un estudio multi-temporal, analizado cuatro períodos: desde 1982 a 2014, con el fin de investigar las posibilidades de implementar un inventario continuo de los Estados Erosivos a nivel nacional; utilizando sensores remotos y técnicas de teledetección como herramienta para la actualización de los usos del suelo, factor determinante para estudiar la evolución de las tasas de erosión a lo largo del tiempo. Los resultados obtenidos de las investigaciones mencionadas, se han aplicado al tramo medio de la cuenca del río Jarama en la provincia de Guadalajara y han permitido comprobar que, la precisión de los datos utilizados en la aplicación del modelo USLE, influyen de una forma determinante en la estimación de las tasas de erosión y, además, hacen posible que la metodología, propuesta en esta Tesis, contribuya a establecer un inventario continuo de la evolución de los Estados Erosivos en un espacio multitemporal y a nivel de escenarios que abarcan una gran superficie. Gracias a este inventario se ha podido aportar información de la evolución de la cubierta vegetal y las pérdidas de suelo en la zona de estudio en el período analizado 1984-2015. ABSTRACT Water erosion in Spain is a serious problem and the consequences in terms of loss of soil resources on which life is based. Since the early eighties of last century, the central government has made two inventories of soil erosion nationwide: Maps of Erosive States (MEES) and the National Inventory of Soil Erosion (INES). In this Doctoral Thesis we have addressed the following issues: - It has deepened in the analysis and implementation of new tools in estimating the topographic factor and vegetation factor involved in the calculation models of soil loss, to improve accuracy in the results of the estimation of rates erosion therewith. - It has established a procedure allowing a continuous inventory of Erosion States of Spain, setting premised time for update. The thesis develops a method that allows to check that the precision used in the base map to determine the vegetation factor and topographical factor USLE model, influences the results of estimating erosion rates. There has also develop a multi-temporal study analyzed four periods: from 1982-2014, in order to investigate the possibilities of implementing a continuous inventory of erosion states at national level; using remote sensing techniques as a tool for updating land use, determining to study the evolution of erosion rates along the time factor. The results of the investigations referred to, have been applied to area around the middle reach of the Jarama river basin in the province of Guadalajara and would have shown that the accuracy of the data used in the model application USLE influence of decisive way estimating erosion rates and also make it possible that the methodology proposed in this thesis, help establish a continuous inventory of the evolution of erosive states in a multi-temporal space and level scenarios covering a large area. Thanks to this inventory was it able to provide information on the evolution of the vegetation cover and soil loss in the study area in the analyzed period 1984-2015.
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.
Resumo:
Rock mass classification systems are widely used tools for assessing the stability of rock slopes. Their calculation requires the prior quantification of several parameters during conventional fieldwork campaigns, such as the orientation of the discontinuity sets, the main properties of the existing discontinuities and the geo-mechanical characterization of the intact rock mass, which can be time-consuming and an often risky task. Conversely, the use of relatively new remote sensing data for modelling the rock mass surface by means of 3D point clouds is changing the current investigation strategies in different rock slope engineering applications. In this paper, the main practical issues affecting the application of Slope Mass Rating (SMR) for the characterization of rock slopes from 3D point clouds are reviewed, using three case studies from an end-user point of view. To this end, the SMR adjustment factors, which were calculated from different sources of information and processes, using the different softwares, are compared with those calculated using conventional fieldwork data. In the presented analysis, special attention is paid to the differences between the SMR indexes derived from the 3D point cloud and conventional field work approaches, the main factors that determine the quality of the data and some recognized practical issues. Finally, the reliability of Slope Mass Rating for the characterization of rocky slopes is highlighted.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
Modeling natural phenomena from 3D information enhances our understanding of the environment. Dense 3D point clouds are increasingly used as highly detailed input datasets. In addition to the capturing techniques of point clouds with LiDAR, low-cost sensors have been released in the last few years providing access to new research fields and facilitating 3D data acquisition for a broader range of applications. This letter presents an analysis of different speleothem features using 3D point clouds acquired with the gaming device Microsoft® Kinect. We compare the Kinect sensor with terrestrial LiDAR reference measurements using the KinFu pipeline for capturing complete 3D objects (< 4m**3). The results demonstrate the suitability of the Kinect to capture flowstone walls and to derive morphometric parameters of cave features. Although the chosen capturing strategy (KinFu) reveals a high correlation (R2=0.92) of stalagmite morphometry along the vertical object axis, a systematic overestimation (22% for radii and 44% for volume) is found. The comparison of flowstone wall datasets predominantly shows low differences (mean of 1 mm with 7 mm standard deviation) of the order of the Kinect depth precision. For both objects the major differences occur at strongly varying and curved surface structures (e.g. with fine concave parts).
Resumo:
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.
Resumo:
Underwater photo-transect surveys were conducted on September 23-27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. This survey was done by swimming along pre-defined transect sites and taking a picture of the bottom substrate parallel to the bottom at constant vertical distance (30cm) every two to three metres. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of transect surveys. Approximation of the coordinates for each benthic photo was based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software. Coordinates of each photo were interpolated by finding the the gps coordinates that were logged at a set time before and after the photo was captured. The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect. By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap exstension will be installed in the ArcMap environment.
Resumo:
Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.