945 resultados para Wakes (Fluid dynamics)
Resumo:
This paper describes an investigation of map width enhancement and a detailed analysis of the inducer flow field due to various bleed slot configurations and vanes in the annular cavity of a turbocharger centrifugal compressor. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400 hp. This investigation has been undertaken using a computational fluid dynamics (CFD) model of the full compressor stage, which includes a manual multiblock-structured grid generation method. The influence of the bleed slot flow on the inducer flow field at a range of operating conditions has been analyzed, highlighting the improvement in surge and choked flow capability. The impact of the bleed slot geometry variations and the inclusion of cavity vanes on the inlet incidence angle have been studied in detail by considering the swirl component introduced at the leading edge by the recirculating flow through the slot. Further, the overall stage efficiency and the nonuniform flow field at the inducer inlet have been also analyzed. The analysis revealed that increasing the slot width has increased the map width by about 17%. However, it has a small impact on the efficiency, due to the frictional and mixing losses. Moreover, adding vanes in the cavity improved the pressure ratio and compressor performance noticeably. A detail analysis of the compressor with cavity vanes has also been presented.
Resumo:
Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.
Resumo:
High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.
Resumo:
The application of blown jet vortex generators to control flow separation in a diffuser with an opening angle of 10° has been studied using the computational fluid dynamics (CFD) code Fluent 6™. Experimental data is available for the uncontrolled flow in the diffuser. The section of the duct upstream of the diffuser has a height H equal to 15 mm; its length and breadth are 101H and 41H respectively; the diffuser has an expansion ratio of 4.7:1. Fully developed flow is achieved upstream of the diffuser. Pipes of diameters equal to 1.5%, 2.5% and 5% of H were considered; pitch angle was constant at 45° and yaw angle was fixed at 60°; velocity ratio was varied from 1.7 to 8.0; both co-rotating and counter-rotating arrays were studied. The best results were obtained with a counter-rotating array of generators with a hole diameter of 5% of H and a velocity ratio of 3.7.
Resumo:
Well planned natural ventilation strategies and systems in the built environments may provide healthy and comfortable indoor conditions, while contributing to a significant reduction in the energy consumed by buildings. Computational Fluid Dynamics (CFD) is particularly suited for modelling indoor conditions in naturally ventilated spaces, which are difficult to predict using other types of building simulation tools. Hence, accurate and reliable CFD models of naturally ventilated indoor spaces are necessary to support the effective design and operation of indoor environments in buildings. This paper presents a formal calibration methodology for the development of CFD models of naturally ventilated indoor environments. The methodology explains how to qualitatively and quantitatively verify and validate CFD models, including parametric analysis utilising the response surface technique to support a robust calibration process. The proposed methodology is demonstrated on a naturally ventilated study zone in the library building at the National University of Ireland in Galway. The calibration process is supported by the on-site measurements performed in a normally operating building. The measurement of outdoor weather data provided boundary conditions for the CFD model, while a network of wireless sensors supplied air speeds and air temperatures inside the room for the model calibration. The concepts and techniques developed here will enhance the process of achieving reliable CFD models that represent indoor spaces and provide new and valuable information for estimating the effect of the boundary conditions on the CFD model results in indoor environments. © 2012 Elsevier Ltd.
Resumo:
The urinary catheter is a thin plastic tube that has been designed to empty the bladder artificially, effortlessly, and with minimum discomfort. The current CH14 male catheter design was examined with a view to optimizing the mass flow rate. The literature imposed constraints to the analysis of the urinary catheter to ensure that a compromise between optimal flow, patient comfort, and everyday practicality from manufacture to use was achieved in the new design. As a result a total of six design characteristics were examined. The input variables in question were the length and width of eyelets 1 and 2 (four variables), the distance between the eyelets, and the angle of rotation between the eyelets. Due to the high number of possible input combinations a structured approach to the analysis of data was necessary. A combination of computational fluid dynamics (CFD) and design of experiments (DOE) has been used to evaluate the "optimal configuration." The use of CFD couple with DOE is a novel concept, which harnesses the computational power of CFD in the most efficient manner for prediction of the mass flow rate in the catheter. Copyright © 2009 by ASME.
Resumo:
Solid particle erosion is a major concern in the engineering industry, particularly where transport of slurry flow is involved. Such flow regimes are characteristic of those in alumina refinement plants. The entrainment of particulate matter, for example sand, in the Bayer liquor can cause severe erosion in pipe fittings, especially in those which redirect the flow. The considerable costs involved in the maintenance and replacement of these eroded components led to an interest in research into erosion prediction by numerical methods at Rusal Aughinish alumina refinery, Limerick, Ireland, and the University of Limerick. The first stage of this study focused on the use of computational fluid dynamics (CFD) to simulate solid particle erosion in elbows. Subsequently an analysis of the factors that affect erosion of elbows was performed using design of experiments (DOE) techniques. Combining CFD with DOE harnesses the computational power of CFD in the most efficient manner for prediction of elbow erosion. An analysis of the factors that affect the erosion of elbows was undertaken with the intention of producing an erosion prediction model. © 2009 Taylor & Francis.
Flow due to multiple jets downstream of a barrage: Experiments, 3-D CFD and depth-averaged modelling
Resumo:
The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiments in a wide flume, a three-dimensional (3D) computational fluid dynamics simulation, and a two-dimensional depth-averaged computation. Agreement between the experiments and the 3D modeling is shown to be good, including the prediction of an asymmetric Coandă effect. One aim is to determine the distance downstream at which depth-averaged modeling provides a reasonable prediction; this is shown to be approximately 20 tube diameters downstream of the barrage. Upstream of this, the depth-averaged modeling inaccurately predicts water level, bed shear, and the 3D flow field. The 3D model shows that bed shear stress can be markedly magnified near the barrage, particularly where the jets become attached.
Resumo:
Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flaptype wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.
Resumo:
Wave impacts on an oscillating wave surge converter are examined using experimental and numerical methods. The mechanics of the impact event are identified experimentally with the use of images recorded with a high-speed camera. It is shown that it is the device that impacts the wave rather than a breaking wave impacting the device. Numerical simulations using two different approaches are used to further understand the issue. Good agreement is shown between numerical simulations and experimental measurements at 25th scale.
Resumo:
This work proposes a novel approach to compute transonic Lim
it Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling HB methods to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency, while producing at least one order of magnitude reduction in computational time.
Resumo:
This paper presents an approach to compute transonic Limit Cycle O
scillations using a coupled Harmonic Balance formulation based on the Euler equations for fluid dynamics and finite element models. The paper will investigate the role of aerodynamic (shocks) and structural nonlinearities in driving the limit cycle behaviour. Part icular attention will be given to nonlinear interactions for subcritical LCOs. The Aero elastic Harmonic Balance formulation, allows for solutions of the coupled structural dynamics and CFD system at a reduced cost.
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. This method has been designed to limit the invasiveness of the probe, a characteristic assessed using CFD. The thermocouple is aligned with the sampling holes to enable simultaneous recording of the gas composition and temperature profiles. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst. The resultant profiles have been compared with a micro-kinetic model, to further assess the strength of the technique.
Resumo:
Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.