986 resultados para WESTERN BOUNDARY
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
This paper sets out the motivation for carrying out an observational experiment on the atmospheric boundary layer along the monsoon trough, in the light of earlier studies of the atmospheric boundary layer in India and elsewhere, and the significant role that the trough has been shown to play as a key semi-permanent feature of the southwest monsoon. The scientific objectives of the experiment are set out, and its planning and execution are touched upon. Some of the gains resulting from the experiment are mentioned, and lessons for the future about the conduct of such programmes are drawn.
Resumo:
The moist tropical forests of the Western Ghats of India are pockmarked with savanna-grasslands created and managed by local agricultural communities. A sample of such savanna-grasslands with differing growing conditions was studied in terms of peak above-ground biomass, monthly growth, and cumulative production under different clipping treatments. The herblayer was found to be dominated by perennial C4 grasses, with Eulalia trispicata, Arundinella metzii and Themeda triandra being common to all sites. Peak biomass ranged between 3.3-5.9 t/ha at sites most favourable for grass production. Across these sites, peak biomass was found to be inversely related to the number of rainy days during the growing season, suggesting that growth may be light-limited. This hypothesis is supported by the observation that growth is most rapid immediately after the easing of the monsoon. Single clips early in the growing season had no negative or a slightly positive effect on production, but mid-season single clips or continuous frequent clipping reduced production by as much as 40%. The results suggest that, while indiscriminate grazing may certainly be deleterious, it is possible to obtain sustained high yields from forest lands managed for grass production without totally excluding grazing.
Resumo:
The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.
Transformation of a laterally diverging boundary layer flow to a two-dimensional boundary layer flow
Resumo:
Laterally diverging boundary layer flow over a plate is shown to be reducible to a two-dimensional flow by modelling the diverging streamlines by a source flow.
Unsteady compressible boundary layer flow in the stagnation region of a sphere with a magnetic field
Resumo:
Abstract: An analysis is performed to study the unsteady compressible laminar boundary layer flow in the forward stagnation-point region of a sphere with a magnetic field applied normal, to the surface. We have considered the case where there is an initial steady state that is perturbed by the step change in the total enthalpy at the wall. The nonlinear coupled parabolic partial differential equations governing the flow and heat transfer have been solved numerically using a finite-difference scheme. The numerical results are presented, which show the temporal development of the boundary layer. The magnetic field in the presence of variable electrical conductivity causes an overshoot in the velocity profile. Also, when the total enthalpy at the wall is suddenly increased, there is a change in the direction of transfer of heat in a small interval of time.
Resumo:
This paper describes the results of the measurement of the Marine Boundary Layer (MBL) height from spectral analysis of the u and v components of the wind and from CLASS/radiosonde temperature profiles. The data were collected on ORV Sagar Kanya during the pre-INDOEX (27 December 1996 through 31 January 1997) and FFP-98 (18 February to 31 March 1998) over the latitude range 15 degrees N to 14 degrees S and 15 degrees N to 20 degrees S respectively. During the pre-INDOEX, the MBL heights gradually decrease from 2.5 km at 13 degrees N to around 500 to 600 m at 10 degrees S, Similar results are observed in the return track. The MBL heights (0.5 to 1 km) obtained during FFP-98 are less compared to those obtained during pre-INDOEX. The MBL heights during FFP-98 are less compared to the pre-INDOEX and are believed to be due to the presence of stratus, stratocumulus and cumulus clouds during the cruise period, compared to a relatively cloud free pre-INDOEX cruise.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Five villages undertaking joint forest management (JFM) were chosen in Uttara Kannada district, Karnataka for assessing regeneration in plantations and nearby natural forests of the village. Species number, stem density, diversity index, similarity in species composition in less disturbed and disturbed forests and plantations in the village were compared. Stem density was low in all the disturbed forests; however, the species number was low in disturbed forests of three villages and high in two villages. Plantations showed lower diversity values compared to the adjacent natural forests. Regeneration in all less disturbed forests was better compared to the disturbed counterparts. Villages were ranked based on number of landless families, per, capita forest available and number of cut stems. Assessment of village forests using ranks indicates that parameters such as per capita availability, cut stems in the forests may determine the success of JFM.
Resumo:
This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.
Resumo:
We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.
Resumo:
This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of the dipole mode (DM) events in the Indian Ocean is examined using an ocean model that is driven by the NCEP fluxes for the period 1975-1998. The positive DM events during 1997, 1994 and 1982 and negative DM events during 1996 and 1984-1985 are captured by the model and it reproduces both the surface and subsurface features associated with these events. In its positive phase, the DM is characterized by warmer than normal SST in the western Indian Ocean and cooler than normal SST in the eastern Indian Ocean. The DM events are accompanied by easterly wind anomalies along the equatorial Indian Ocean and upwelling-favorable alongshore wind anomalies along the coast of Sumatra. The Wyrtki jets are weak during positive DM events, and the thermocline is shallower than normal in the eastern Indian Ocean and deeper in the west. This anomaly pattern reverses during negative DM events. During the positive phase of the DM easterly wind anomalies excite an upwelling equatorial Kelvin wave. This Kelvin wave reflects from the eastern boundary as an upwelling Rossby wave which propagates westward across the equatorial Indian Ocean. The anomalies in the eastern Indian Ocean weaken after the Rossby wave passes. A similar process excites a downwelling Rossby wave during the negative phase. This Rossby wave is much weaker but wind forcing in the central equatorial Indian Ocean amplifies the downwelling and increases its westward phase speed. This Rossby wave initiates the deepening of the thermocline in the western Indian Ocean during the following positive phase of the DM. Rossby wave generated in the southern tropical Indian Ocean by Ekman pumping contributes to this warming. Concurrently, the temperature equation of the model shows upwelling and downwelling to be the most important mechanism during both positive events of 1994 and 1997. (C) 2002 Elsevier Science Ltd. All rights reserved.
Study of magnetoresistance and conductance of bicrystal grain boundary in La0.67Ba0.33MnO3 thin film
Resumo:
La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7degrees SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature T > 175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T < 175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures (T > 175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip scattering process.