996 resultados para Vortex-motion.
Resumo:
An enhanced physical model of the bowed string presented previously [1] is explored. It takes into account: the width of the bow, the angular motion of the string, bow-hair elasticity and string bending stiffness. The results of an analytical investigation of a model system - an infinite string sticking to a bow of finite width and driven on one side of the bow - are compared with experimental results published by Cremer [2] and reinterpreted here. Comparison shows that both the width of the bow and the bow-hair elasticity have a large impact on the reflection and transmission behaviour. In general, bending stiffness plays a minor role. Furthermore, a method of numerical simulation of the stiff string bowed with a bow of finite width is presented along with some preliminary results.
Resumo:
A block-based motion estimation technique is proposed which permits a less general segmentation performed using an efficient deterministic algorithm. Applied to image pairs from the Flower Garden and Table Tennis sequences, the algorithm successfully localizes motion discontinuities and detects uncovered regions. The algorithm is implemented in C on a Sun Sparcstation 20. The gradient-based motion estimation required 28.8 s CPU time, and 500 iterations of the segmentation algorithm required 32.6 s.
Resumo:
Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.
Resumo:
This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.